English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 2004-2012 DOI: 10.7536/PC200317 前一篇   后一篇

• 综述 •

离子液体在电沉积铝及铝合金中的应用

刘风国1, 王博1, 章莲玉1, 刘爱民1, 王兆文1, 石忠宁1,2,**()   

  1. 1 东北大学 多金属共生矿生态化冶金教育部重点实验室 沈阳 110819
    2 东北大学 轧制技术及连轧自动化国家重点实验室 沈阳 110819
  • 收稿日期:2020-03-17 修回日期:2020-07-19 出版日期:2021-10-20 发布日期:2020-10-20
  • 通讯作者: 石忠宁
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(No. 51804070); 中央高校基本科研业务费项目(No. N182503033); 中央高校基本科研业务费项目(N172502003)

Application of Ionic Liquids in Aluminum and Alloy Electrodeposition

Fengguo Liu1, Bo Wang1, Lianyu Zhang1, Aimin Liu1, Zhaowen Wang1, Zhongning Shi1,2,**()   

  1. 1 Key Laboratory for Ecological Metallurgy of Multimetallic Mineral(Ministry of Education), Northeastern University, Shenyang 110819, China
    2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
  • Received:2020-03-17 Revised:2020-07-19 Online:2021-10-20 Published:2020-10-20
  • Contact: Zhongning Shi
  • Supported by:
    the National Natural Science Foundation of China(No. 51804070); the Fundamental Research Funds for the Central Universities(No. N182503033); the Fundamental Research Funds for the Central Universities(N172502003)

离子液体具有不挥发、不燃烧、热稳定性高、电化学窗口宽等特点,被认为是一种满足可持续发展和绿色化学需求的溶剂介质,因其在室温下可以电沉积出多种活泼金属及合金而备受关注。本文系统地介绍了近年来离子液体在电沉积铝及铝合金中的应用进展,分类概括了用于电沉积铝及铝合金的离子液体类型;综述了电沉积机理;对不同形貌的金属铝以及二元、三元铝合金的电沉积技术进行了详细的阐述;最后探讨了当前离子液体在电沉积铝及铝合金理论与技术研究中存在的问题,并对其发展方向进行了展望。

Ionic liquids have been considered as the solvent media to meet the needs of sustainable and green chemistry because of the characteristics of non-volatilization, non-combustion, high thermal stability, wide electrochemical window and so on. As a variety of active metals and alloys can be electrodeposited in ionic liquids at room temperature, ionic liquids have attracted much attention. In this review, we present the application progress of ionic liquids in electrodeposition of aluminum and aluminum alloy in recent years systematically. The types of ionic liquids used in electrodeposition of aluminum and aluminum alloy are classified. The mechanism of metal electrodeposition is summarized. The electrodeposition technology of aluminum with different morphologies as well as binary and ternary aluminum alloy is described in detail. Furthermore, the existing theoretical and technical problems on aluminum and alloy electrodeposition in ionic liquids are discussed, and the potential development direction is also prospected.

Contents

1 Introduction

2 Types of Ionic Liquids

3 Mechanism of Metal Electrodeposition in Ionic Liquids

4 Aluminum Electrodeposition in Ionic Liquids

5 Aluminum Alloy Electrodeposition in Ionic Liquids

6 Conclusion and outlook

()
图1 ISI Web of Knowledge收录的1990~2019年离子液体为主题的论文数量(检索时间:2020年3月)
Fig.1 Publications on ionic liquids indexed by ISI Web of Knowledge from 1990 to 2019(2020-03)
表1 AlCl3型离子液体的种类和电沉积金属铝及铝合金的种类
Table 1 Types of AlCl3 containing ionic liquids and metals/alloys eletrodepostion
Types Ionic Liquids Names Abbreviation Names Metals/Alloys Deposits
AlCl3-imidazole 1-ethyl-3-methylimidazolium chloride [Emim]Cl Al[15 ?~17]
Al-Mg[18]
Al-Cu[19]
Al-Zn[20]
Al-La[21]
Al-Zr[22]
Al-Mn[23]
Al-Mn-Zr[24]
Al-In-Sb[25]
Al-Mo-Mn[26]
Al-Mo-Ni[27]
Al-W-Mn[28]
Al-Cr-Ni[29]
1-butyl-3-methylimidazolium chloride [Bmim]Cl Al[30 ? ?~33]
Al-Co[34]
Al-Ce[35]
Al-Ti[37]
Al-Ni[38]
AlCl 3-pyridine 1-Allyl-3-methylimidazolium chloride [Amim]Cl Al[39]
1-(2-methoxyethyl)-3-methylimidazolium chloride [MoeMim]Cl Al[40]
l,3-dibenzyl-imidazolium chloride [DBzmim]Cl Al[41]
l-benzyl-3-methyl-imidazolium chloride [Bzmim]Cl Al[41]
1-methyl-3-ethylimidazolium bromide [Emim]Br Al[42]
1-methyl-3-ethylimidazolium fluoride [Emim]F Al[43]
N, N’-dimethyl imidazolium perfluoro-3-oxa-4,5-dichloro-pentan-sulphonate $[IMI] [CF_{2}ClCFClOCF_{2}CF_{2}SO_{3}^{-}]$ Al[44]
1-butyl-3methylpyridinium chloride [BMPyri]Cl Al[45]
1,2,4,6-tetramethyl pyridinium perfluoro-3-oxa-4,5-dichloro-pentan-sulphonate $[PYR] [CF_{2}ClCFClOCF_{2}CF_{2}O_{3}^{-}]$ Al[44]
4-propylpyridine 4-Pr-Py Al[46]
N-( n-butyl) pyridinium chloride BPC Al[47]
Al-Cr[48]
Al-Ti[49]
Al-Ni[50]
Al-Co[51]
AlCl 3-hyamine trimethylphenylammonium chloride TMPAC Al[53]
trimethylamine hydrochloride TMHC Al[55]
Al-Fe[56]
triethylammine hydrochloride Et 3NHCl Al-Cu[57]
Al-Ni[58]
Al-Zr-Cu[59]
AlCl 3-pyrrole benzyltrimethylammonium chloride BTMAC Al-Pt[60]
1-butyl-1-methylpyrrolidinium chloride [Py 1,4]Cl Al[45]
1-butylpyrrolidine - Al[61]
1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate [Py 1,4]TfO Al-Fe[62]
Al-Cu[63]
AlCl 3-Others 1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide [Py 1,4]Tf2N Al[65]
tetramethyl guanidinium perfluoro-3-oxa-4,5-dichloro-pentan-sulphonate $[GUA] [CF_{2}ClCFClOCF_{2}O_{3}^{-}]$ Al[66]
γ-butyrolactone GBL Al[67]
ethylene carbonate EC Al-Li[68]
Al-Nd[69]
urea - Al[70]
amide(acetamide/propionamide/butyramide) - Al[71]
poly(ethylene glycol)-KCl PEG-KCl Al[72]
choline chloride-ethylene glycol Ethaline Al[73]
dimethylsulfone DMSO 2 Al[74]
图2 几种阳离子的结构式
Fig.2 Structural formulae of several cations
图3 铝在[Emim]Cl-AlCl3中不同极化条件下电沉积过程示意图:恒电流极化(GP)、单极电流脉冲极化(MCP)和双极电流脉冲极化(BCP)[15]
Fig.3 Schematic representation of growth of Al electrodeposited from the [Emim]Cl-AlCl3(0.5 mol%) bath using the galvanostatic polarization(GP), monopolar current pulse polarization(MCP) and bipolar current pulse polarization(BCP) methods[15]
图4 离子液体中电沉积不同形貌的金属铝: (a)纳米晶[40];(b)球状[85];(c)线状[55];(d)纳米棒[86];(e)纳米棒阵列[87]
Fig.4 Different morphologies of aluminum deposits obtained in ionic liquids: (a) nanocrystalline[40],(b) sphericity[85],(c) wires[55],(d) nanorods[86],(e) nanopillars[87]
图5 AlCl3型离子液体电沉积铝合金元素
Fig.5 Alloy elements electrodeposited in AlCl3containing ionic liquids
图6 (a~f)[Bmim]Cl-AlCl3离子液体中电沉积Al-Ti合金镀层SEM图[36]: (a)0.22 mol·L-1 TiCl4,1 mA·cm-2,Al91.9Ti8.1;(b)0.22 mol·L-1 TiCl4,3 mA·cm-2,Al90.2Ti9.8;(c)0.22 mol·L-1 TiCl4,5 mA·cm-2,Al88.6Ti11.4;(d)0.22 mol·L-1 TiCl4,10 mA·cm-2,Al89.8Ti10.2;(e)0.05 mol·L-1 TiCl4,1 mA·cm-2,Al64.2Ti35.8;(f)0.05 mol·L-1 TiCl4,10 mA·cm-2,Al94.1Ti5.9;(g~j)NaCl-AlCl3低温熔盐中电沉积Al-Ti合金SEM图[88]:电解液中F/Ti摩尔比为(g)0.5;(h)1.0;(i)2.0;(j)4.0
Fig.6 (a~f)SEM images of Al-Ti alloy coatings electrodeposited in [Bmim]Cl-AlCl3ionic liquids[36]: (a) 0.22 mol·L-1 TiCl4, 1 mA·cm-2, Al91.9Ti8.1;(b) 0.22 mol·L-1 TiCl4, 3 mA·cm-2, Al90.2Ti9.8;(c) 0.22 mol·L-1 TiCl4, 5 mA·cm-2, Al88.6Ti11.4;(d) 0.22 mol·L-1 TiCl4, 10 mA·cm-2, Al89.8Ti10.2;(e) 0.05 mol·L-1 TiCl4, 1 mA·cm-2, Al64.2Ti35.8;(f) 0.05 mol·L-1 TiCl4, 10 mA·cm-2, Al94.1Ti5.9,(g~j)SEM images of Al-Ti alloy electrodeposited in NaCl-AlCl3low temperature molten salts[88]: mole ratio of F/Ti in electrolyte(g) 0.5,(h) 1.0,(i) 2.0,(j) 4.0
图7 (a~d)[Emim]Cl-AlCl3离子液体中在铜基体上电沉积的Al-Mg合金SEM图[89]: (a)沉积电位-0.30 V;(b)沉积电位-0.50 V;(c)阴极电流密度-33.3 A·m-2;(d)阴极电流密度-42.0 A·m-2;(e,f)Na[AlEt4]-Na[Et3Al-H-AlEt3]-AlEt3-甲苯体系中电沉积Al-Mg合金SEM图[90]:(e)沉积电位-4 V,羽毛状;(f)沉积电位-5 V,小球状;
Fig.7 (a~d)SEM images of Al-Mg alloy on Cu substrate electrodeposited in [Emim]Cl-AlCl3ionic liquids[83]: (a) deposition potential: -0.3 V;(b) deposition potential: -0.5 V;(c) cathode current density: -33.3 A·m-2;(d) cathode current density: -42.0 A·m-2;(e,f)SEM images of Al-Mg alloy electrodeposited in Na[AlEt4]-Na[Et3Al-H-AlEt3]-AlEt3-toluene[90]:(e) deposition potential: -4 V, featherlike morphology;(f) deposition potential: -5 V, globular morphology
[1]
Abbott A P , McKenzie K J . Phys. Chem. Chem. Phys., 2006, 8: 4265.
[2]
Huang P , Latham J A , MacFarlane D R , Howlett P C , Forsyth M . Electrochim. Acta, 2013, 110: 501.
[3]
Liu B , Jin N . Curr. Org. Chem., 2016, 20: 2109.
[4]
孟艳山( Meng Y S ), 陈玉焕( Chen Y H ), 邓雨晨( Deng Y C ), 张姝明( Zhang S M ), 王桂香( Wang G X ). 化学进展( Progress in Chemistry), 2015, 27: 1324.
[5]
Walden P. Bull. Acad. Imper. Sci. St Petersbourg, 1914, 1800: 400.
[6]
Hurley F H , Wier T P . J. Electrochem. Soc., 1951, 98.
[7]
Vaughan J , Tu J , Dreisinger D . Min. Proc. Ext. Met., 2013, 117: 113.
[8]
Zhang Q , Wang Q , Zhang S , Lu X , Zhang X . Chemphyschem, 2016, 17: 335.
[9]
Liu F , Deng Y , Han X , Hu W , Zhong C . J. Alloys Compd., 2016, 654: 163.
[10]
张丽鹏( Zhang L P ), 王晓铭( Wang X M ), 于先进( Yu X J ), 张德超( Zhang D C ). 湿法冶金( Hydrometallurgy), 2010, 29: 220.
[11]
钟熊伟( Zhong X W ), 熊婷( Xiong T ), 陆俊( Lu J ), 石忠宁( Shi Z N ), 胡宪伟( Hu X W ), 高炳亮( Gao B L ), 王兆文( Wang Z W ). 有色金属科学与工程( Nonferrous Metals Science and Engineering), 2014, 5: 44.
[12]
张锁江( Zhang S J ), 孙宁( Sun N ), 吕兴梅( Lv X M ), 张香平( Zhang X P ). 中国科学B辑:化学( Science in China Series B, Chemistry), 2006, 36: 23.
[13]
Bakkar A , Neubert V . Electrochim. Acta, 2013, 103: 211.
[14]
Tang J , Azumi K . Surf. Coat. Technol., 2012, 208: 1.
[15]
Tang J , Azumi K . Electrochim. Acta, 2011, 56: 1130.
[16]
Bakkar A , Neubert V . Electrochem. Commun., 2015, 51: 113.
[17]
Jiang Y , Ding J , Luo L , Shi P , Wang X . Surf. Coat. Technol., 2017, 309: 980.
[18]
Morimitsu M , Tanaka N , Matsunaga M . Chem. Lett., 2000, 29: 1028.
[19]
Tierney B J , Pitner W R , Mitchell J A , Husse C L . J. Electrochem. Soc., 1998, 145: 3110.
[20]
Pan S J , Tsai W T , Chang J K , Sun I W . Electrochim. Acta, 2010, 55: 2158.
[21]
Tsuda T , Nohira T , Ito Y . Electrochim. Acta, 2002, 47: 2817.
[22]
Hilty R D , Masur L J . JOM, 2017, 69: 2621.
[23]
Huang T Y , Marvel C J , Cantwell P R , Harmer M P , Schuh C A . J. Mater. Sci., 2015, 51: 438.
[24]
Yang J , Chang L , Jiang L , Wang K , Huang L , He Z , Shao H , Wang J , Cao C . Surf. Coat. Technol., 2017, 321: 45.
[25]
Tsuda T , Hussey C L . Thin Solid Films, 2008, 516: 6220.
[26]
Tsuda T , Hussey C L , Stafford G R . J. Electrochem. Soc., 2005, 152: C620.
[27]
Tsuda T. ECS Proceedings, 2004, 24: 866.
[28]
Tsuda T , Ikeda Y , Kuwabata S , Stafford G R , Hussey C L . ECS Transactions, 2014, 64: 563.
[29]
Ueda M , Ebe H , Ohtsuka T . Electrochemistry, 2005, 73: 739.
[30]
Wang Q , Chen B , Zhang Q , Lu X , Zhang S . ChemElectroChem, 2015, 2: 1794.
[31]
Zhang D , Mu Y , Li H , Yang Z , Yang Y . RSC Adv., 2018, 8: 39170.
[32]
Tu X , Zhang J , Zhang M , Cai Y , Lang H , Tian G , Wang Y , RSC Adv., 2017, 7: 14790.
[33]
Caporali S , Fossati A , Lavacchi A , Perissi I , Tolstogouzov A , Bardi U . Corros. Sci., 2008, 50: 534.
[34]
Zell C A , Freyland W . Langmuir, 2003, 19: 7445.
[35]
Lisenkov A , Zheludkevich M L , Ferreira M G S . Electrochem. Commun., 2010, 12: 729.
[36]
Xu C , Hua Y , Zhang Q , Li J , Lei Z , Lu D . J. Solid State Electrochem., 2017, 21: 1349.
[37]
Shinde P S , Peng Y , Reddy R G . TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, The Minerals, Metals &Materials Series, 2020, 1659.
[38]
Zell C A , Freyland W . Chem. Phys. Lett., 2001, 337: 293.
[39]
Zheng Y , Zhang S , LÜ X , Wang Q , Zuo Y , Liu L . Chin. J. Chem. Eng., 2012, 20: 130.
[40]
Abedin Z E S , Giridhar P , Schwab P , Endres F . Electrochem. Commun., 2010, 12: 1084.
[41]
Ismail A S , Egypt. J. Petrol., 2016, 25: 525.
[42]
Zhang L P , Yu X J , Dong Y H , Li D G , Zhang Y L , Li Z F . Trans. Nonferrous Met. Soc. China, 2010, 20: 245.
[43]
Wang D , Zhong X , Liu F , Shi Z . Int. J. Electrochem. Sci., 2019, 9482.
[44]
Galindo M , Sebastián P , Cojocaru P , Gómez E . J. Electroanal. Chem., 2018, 820: 41.
[45]
Wang Q , Zhang Q , Lu X , Zhang S . Ionics, 2017, 23: 2449.
[46]
Fang Y , Yoshii K , Jiang X , Sun X G , Tsuda T , Mehio N , Dai S . Electrochim. Acta, 2015, 160: 82.
[47]
Yang C C. Mater. Chem. Phys., 1994, 37: 355.
[48]
Muhammad R A , Nishikata A , Tsuru T . Electrochim. Acta, 1997, 42: 2347.
[49]
Ali M R , Nishikata A , Tsuru T . Indian J . Chem. Technol., 2003, 10: 14.
[50]
Ali M R , Nishikata A , Tsuru T . J. Electroanal. Chem., 2001, 513: 111.
[51]
Ali M R , Nishikata A , Tsuru T . Electrochem. Acta, 1997, 42: 1819.
[52]
Jiang T , Chollier B M J , Dubé G , Lasia A , Brisard G M . Surf. Coat. Technol., 2006, 201: 10.
[53]
Liu K , Liu Q , Han Q , Tu G . Trans. Nonferrous Met. Soc. China, 2011, 21: 2104.
[54]
Hou Y , Li R , Liang J . Appl. Surf. Sci., 2018, 434: 918.
[55]
Su C J , Hsieh Y T , Chen C C , Sun I W . Electrochem. Commun., 2013, 34: 170.
[56]
Chen G , Chen Y , Guo Q , Wang H , Li B . Faraday Discuss., 2016, 190: 97.
[57]
Suneesh P V , Satheesh Babu T G, Ramachandran T . Int. J. Miner. Metall. Mater., 2013, 20: 909.
[58]
Gao L X , Wang L N , Qi T , Yu J . Acta Phys . Chim. Sin., 2012, 28: 111.
[59]
Suneesh P V , Ramachandran T , Satheesh Babu T G. Materials Today: Proceedings, 2018, 5: 16640.
[60]
Abbott A P , Eardley C A , Farley N R , Griffith G A , Pratt A . J. Appl. Electrochem., 2001, 31: 1345.
[61]
Pulletikurthi G , Bödecker B , Borodin A , Weidenfeller B , Endres F . Prog. Nat. Sci. Mater., 2015, 25: 603.
[62]
Giridhar P , Weidenfeller B , El Abedin S Z, Endres F . Phys. Chem. Chem. Phys., 2014, 16: 9317.
[63]
Giridhar P , Zein El Abedin S, Endres F , J. Solid State Electrochem., 2012, 16: 3487.
[64]
El Abedin S Z, Moustafa E M , Hempelmann R , Natter H , Endres F. Electrochem. Commun., 2005, 7: 1111.
[65]
Abedin Z E S. Transactions of the IMF, 2013, 86: 220.
[66]
Oriani A V , Cojocaru P , Monzani C , Vallés E , Gómez E . J. Electroanal. Chem., 2017, 793: 85.
[67]
Wen X , Liu Y , Xu D , Zhao Y , Lake R K , Guo J . J. Phys. Chem. Lett., 2020, 11: 1589.
[68]
Zhang B , Shi Z , Shen L , Liu A , Xu J , Hu X . J. Electrochem. Soc., 2018, 165: D321.
[69]
Zhang B , Shi Z , Shen L , Liu X , Xu J , Wang Z . J. Solid State Electrochem., 2019, 23: 1903.
[70]
Prabu S , Wang H . Chin. J. Chem. Eng., 2020, 28: 854.
[71]
Li M , Gao B , Liu C , Chen W , Wang Z , Shi Z , Hu X . J. Solid State Electrochem., 2016, 21: 469.
[72]
Jiang J , Zhao W , Xue Z , Li Q , Yan C , Mu T . ACS Sustain . Chem. Eng., 2016, 4: 5814.
[73]
Kityk A A , Protsenko V S , Danilov F I , Kun O V , Korniy S A . Surf. Coat. Technol., 2019, 375: 143.
[74]
Miyake M , Motonami H , Shiomi S , Hirato T . Surf. Coat. Technol., 2012, 206: 4225.
[75]
王军( Wang J ). 离子液体的性能及应用(Properties and Application of Ionic Liquids),北京:中国纺织出版社(Beijing:China Textile Press), 2007, 253.
[76]
Jiang Y , Fang L , Luo L , Wang S , Wang X . J. Appl. Electrochem., 2018, 48: 827.
[77]
Debabrata P , Reddy R G . Metall. Mater. Trans. B, 2012, 43B: 519.
[78]
Chen L , Wang G , He Y , Wang Y , Zhang M . Mater. Lett., 2020, 258: 126814.
[79]
Guinea E , Salicio-Paz A , Iriarte A , Grande H J , Medina E , Garcia-Lecina E . Chemistry Open, 2019, 8: 1094.
[80]
Wang Q , Zhang Q , Chen B , Lu X , Zhang S . J. Electrochem. Soc., 2015, 162: D320.
[81]
Zhang Q , Wang Q , Zhang S , Lu X . J. Solid State Electrochem., 2014, 18: 257.
[82]
Ueda M , Hariyama S , Ohtsuka T . J. Solid State Electrochem., 2012, 16: 3423.
[83]
Uehara K , Yamazaki K , Gunji T , Kaneko S , Tanabe T , Ohsaka T , Matsumoto F . Electrochim. Acta, 2016, 215: 556.
[84]
Giridhar P , El Abedin S Z, Endres F . Electrochim. Acta, 2012, 70: 210.
[85]
Lang H , Wang Q , Tu X , Chen S . Ionics, 2017, 24: 1781.
[86]
Pomfret M B , Brown D J , Epshteyn A , Purdy A P , Owrutsky J C . Chem. Mater, 2008, 20: 5945.
[87]
Perre E , Nyholm L , Gustafsson T , Taberna P L , Simon P , Edström K . Electrochem. Commun., 2008, 10: 1467.
[88]
Song J , Mukherjee A . RSC Adv., 2016, 6: 82049.
[89]
Ali M R , Abbott A P , Ryder K S . J. Electrochem., 2015, 21: 172.
[90]
Tatiparti S S V , Ebrahimi F . J. Solid State Electrochem., 2012, 16: 1255.
[91]
Nie Z R , Jin T N , Zou J X , Fu J B , Zuo T Y . Trans. Nonferrous Met. Soc. China, 2003, 13: 509.
[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[3] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[4] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[5] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[6] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[7] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[8] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[9] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.
[10] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[11] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[12] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[13] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.
[14] 孙晓杰, 邢钧, 翟毓秀, 李兆新. 离子液体在气相色谱固定相中的应用[J]. 化学进展, 2014, 26(04): 647-656.
[15] 李庆川, 曹立新, 胡海峰, 王凯, 闫培生. 黄曲霉毒素电化学生物传感器[J]. 化学进展, 2014, 26(04): 657-664.