English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1400-1412 DOI: 10.7536/PC150320 前一篇   后一篇

• 综述与评论 •

聚乙二醇功能化离子液体的制备及其在有机反应中的应用

徐艺凇, 张凤香, 厉嘉云, 白赢*, 肖文军, 彭家建*   

  1. 杭州师范大学有机硅化学及材料技术教育部重点实验室 杭州 311121
  • 收稿日期:2015-03-01 修回日期:2015-04-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 白赢,彭家建 E-mail:baiying0912@163.com;jjpeng@hznu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21303034,21203049)和浙江省自然科学基金项目(No.LY14B030007)资助

Preparation and Applications in Organic Reactions of Polyethylene Glycol Functionalized Ionic Liquids

Xu Yisong, Zhang Fengxiang, Li Jiayun, Bai Ying*, Xiao Wenjun, Peng Jiajian*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
  • Received:2015-03-01 Revised:2015-04-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21303034, 21203049) and the Natural Science Foundation of Zhejiang Province, China (No. LY14B030007).
聚乙二醇功能化离子液体作为一个新的研究方向受到了化学研究者关注,该类离子液体已经成功地应用于许多有机合成反应中,可以明显改善催化剂性能,并可在一定程度上解决传统催化剂使用中遇到的难分离、难回收再利用的问题。本文介绍了聚乙二醇功能化离子液体的发展历程、制备方法和其作为反应介质、溶剂或催化剂在有机合成反应中应用的最新研究成果,主要包括加成反应、缩合反应、还原反应、酯化反应、硝化反应、氧化反应、水解反应、Heck 反应以及Suzuki-Miyaura反应等。
The ionic liquids have been widely applied in the organic synthesis as a new reaction medium or catalysts, because of their special properties and excellent solubility with organic and inorganic compounds. Recently, polyethylene glycol-functionalized ionic liquids have attracted much attention from the researchers engaging in organic synthesis. The polyethylene glycol-functionalized ionic liquids merged the physical and chemical properties of ionic liquids and polyethylene glycol, so it can be used as better solvent or reaction medium than that of ionic liquids or polyethylene glycol respectively. On the other hand, the polyethylene glycol-functionalized ionic liquids could be easily modified with different functional groups, which can change the corresponding electronic properties by the modification of their structure. All this will contribute greatly to improve the catalytic performance in polyethylene glycol-functionalized ionic liquids involved organic reactions. The previous progress showed that there are several merits for the application of polyethylene glycol ionic liquids in organic synthesis, not only improved the catalytic activity and selectivity of reaction, but also simplified the work-up, and facilitated the separation and reuse of traditional catalyst. The paper summarizes the synthesis of various polyethylene glycol functionalized ionic liquids, and focused on the recent applications of polyethylene glycol functionalized ionic liquids as new reaction medium, or catalyst in organic reaction, including addition reaction, condensation reaction, reduction reaction, esterification, nitration reaction, oxidation reaction, hydrolysis reaction, Heck reaction, Suzuki-Miyaura coupling reaction, etc.

Contents
1 Introduction
2 Progress and preparation of polyethylene glycol functionalized ionic liquids
3 Application of polyethylene glycol functionalized ionic liquids in the addition reaction
3.1 Hydrosilylation
3.2 Cycloaddition of epoxy compounds with CO2
4 Application of polyethylene glycol functionalized ionic liquids in the condensation reaction
4.1 Application of polyethylene glycol functionalized ionic liquids/toluene in the acetal reaction
4.2 Condensation reaction of three components
4.3 Condensation reaction of four components
4.4 Knoevenagel condensation reaction
5 Application of polyethylene glycol functionalized ionic liquids in the reduction reaction
5.1 Application of PEG1000-DAIL/toluene in the reduction reaction of aromatic nitro compounds
5.2 Catalytic synthesis of 2-(amino benzene) six fluorine isopropyl alcohol
5.3 Catalytic hydrogenation
6 Application of polyethylene glycol functionalized ionic liquids in the esterification reaction
7 Application of polyethylene glycol functionalized ionic liquids in the nitration
8 Application of polyethylene glycol functionalized ionic liquids in the oxidation reaction
9 Application of polyethylene glycol functionalized ionic liquids in the hydrolysis reaction
10 Application of polyethylene glycol functionalized ionic liquids in the other reaction
11 Conclusion and perspective

中图分类号: 

()
[1] Lee S G. Chem. Commun., 2006, 10: 1049.
[2] Pucheault M, Vaultier M. Top Curr. Chem., 2009, 290: 83.
[3] Giernoth R. Angew Chem. Int. Ed., 2010, 49(16): 2834.
[4] 应安国(Ying A G), 叶伟东(Ye W D), 刘泺(Liu L), 吴国锋(Wu G F), 陈新志(Chen X Z), 钱胜(Qian S), 张秋萍(Zhang Q P). 有机化学(Chinese Journal of Organic Chemistry), 2008, 28(12): 2081.
[5] 钟涛(Zhong T), 乐长高(Le Z G), 谢宗波(Xie Z B), 曹霞(Cao X), 吕雪霞(Lv X X). 有机化学(Chinese Journal of Organic Chemistry), 2010, 30(7): 981.
[6] Chen J, Spear S K, Huddleston J G, Holbrey J D, Swatloski R P, Rogers R D. Green Chem., 2004, 43(17): 5358.
[7] Naik S D, Doraiswamy L K. AIChE J., 1998, 44(3): 612.
[8] Chen J, Spear S K, Huddleston J G, Rogers R D. Green Chem., 2005, 7(2): 64.
[9] Chandrasekhar S, Prakash S J, Rao C L. J. Org. Chem., 2006, 71(5): 2196.
[10] Fraga D J, Famelart M H, Bazureau J P. Org. Proc. Res. Dev., 2002, 6(4): 374.
[11] Jin C M, Ye C F, Phillips B S, Zabinski J S, Liu X Q, Liu W M, Shreeve J M. J. Mater. Chem., 2006, 16(16): 1529.
[12] Zhi H Z, Lv C X, Zhang Q, Luo J. Chem. Commun., 2009, 20: 2878.
[13] Li H, Hou Z S, Qiao Y X, Feng B, Hu Y, Wang X R, Zhao X G. Catal. Commun., 2010, 11(5): 470.
[14] Williams M E, Masui H, Long J W, Malik J, Murray R W. J. Am. Chem. Soc., 1997, 119(8): 1997.
[15] Masui H, Murray R W. Inorg. Chem., 1997, 36(22): 5118.
[16] Long J W, Kim I K, Murray R W. J. Am.Chem. Soc., 1997, 119(47): 11510.
[17] Williams M E, Crooker J C, Pyati R, Lyons L J, Murray R W. J. Am. Chem. Soc., 1997, 119(42): 10249.
[18] Dickinson V E, Williams M E, Hendrichson S M, Masui H, Murray R W. J. Am. Chem. Soc., 1999, 121(4): 613.
[19] Liu N, Liu C, Jin Z.Green Chem., 2012, 14(3): 592.
[20] 付尧(Fu Y). 大连理工大学硕士学位论文(Master Dissertation of Dalian University of Technology), 2014.
[21] 姚美焕(Yao M H), 梁永民(Liang Y M), 夏延秋(Xia Y F), 周峰(Zhou F). 2009年全国摩擦学学术会议(The 2009 National Conference on Tribology),长沙(Changsha). 379.
[22] Wu C, Peng J J, Li J Y, Bai Y, Hu Y Q, Lai G Q. Catal. Commun., 2008, 10(2): 248.
[23] Xu Y S, Bai Y, Peng J J, Li J Y, Xiao W J, Lai G Q. J. Organomet. Chem., 2014, 765: 59.
[24] Calo V, Nacci A, Monopoli A, Fanizzi A. Org. Lett., 2002, 4(15): 2561.
[25] Nishikubo T, Kameyama A, Yamashita J, Tomoi M, Fukuda W. J. Polym. Sci. Part A: Polym. Chem., 1993, 31(4): 939.
[26] Nishikubo T, Kameyama A, Yamashita J, Fukumitsu T, Maejima C, Tomoi M. J. Polym. Sci. Part A: Polym. Chem., 1995, 33(7): 1011.
[27] Ochiai B, Endo T. J. Polym. Sci. Part A: Polym. Chem., 2007, 45(23): 5673.
[28] Takeda N, Inoue S. Bull. Chem. Soc. Jpn., 1978, 51(12): 3564.
[29] Kasuga K, Kato T, Kabata N, Handa M. Bull. Chem. Soc. Jpn., 1996, 69(10): 2885.
[30] Jin L L, Jing H W, Chang T, Bu X L, Wang L, Liu Z L. J. Mol. Catal. A: Chem., 2007, 261(2): 262.
[31] Fujinami T, Suzuki T, Kamiya M, Fukuzawa S, Sakai S. Chem. Lett., 1985, 14(2): 199.
[32] Melendez J, North M, Pasquale R. Eur. J. Inorg. Chem., 2007, 21: 3323.
[33] North M, Pasquale R. Angew. Chem. Int. Ed., 2009, 48(16): 2946.
[34] Berkessel A, Brandenburg M. Org. Lett., 2006, 8(20): 4401.
[35] Yang Z Z, Zhao Y N, He L N, Gao J, Yin Z S. Green Chem., 2012, 14(2): 519.
[36] 姚锐(Yao R). 天津大学硕士论文(Master Dissertation of Tianjin University), 2012.
[37] Smith B M, Graham A E. Tetrahedron Lett., 2006, 47(52): 9317.
[38] Li D M, Shi F, Peng J J, Guo S, Deng Y Q. J. Org. Chem., 2004, 69(10): 3582.
[39] 职慧珍(Zhi H Z), 罗军(Luo J),马伟(Ma W),吕春绪(Lü C X).高等学校化学学报(Chemical Journal of Chinese University), 2008, 29(10): 2007.
[40] Zhi H Z, Lu C X, Zhang Q, Luo J. Chem. Commun, 2009, 2878.
[41] 职慧珍(Zhi H Z). 南京理工大学博士论文(Doctoral Dissertation of Nanjing University of Science and Technology), 2012.
[42] Wang Y L, Li Z, Luo J, Liu Z L. J. Chin. Chem. Soc., 2013, 60(12): 1431.
[43] Kuo S C, Huang L J, Nakamura H. Med. Chem., 1984, 27(4): 539.
[44] 史达清(Shi D Q), 张姝(Zhang S), 庄启亚(Zhuang Q Y), 屠树江(Tu S J), 胡宏纹(Hu H W). 有机化学(Chinese Journal of Organic Chemistry), 2003, 23(11): 1314.
[45] Mecadon H, Rohman M R, Kharbangar I, Laloo B M, Kharkongor I, Rajbangshi M, Myrboh B. Tetrahedron Lett., 2011, 52(25): 3228.
[46] Litvinov Y M, Shestopalov A A, Rodinovskaya L A, Shestopalov A M. J. Comb. Chem., 2009, 11(5): 914.
[47] Ablajan K, Maimaiti Z. Synth. Commun., 2012, 42(13): 1959.
[48] Zou Y, Wu H, Hu Y, Liu H, Zhao X, Ji H L, Shi D Q. Ultrason. Sonochem., 2011, 18(3): 708.
[49] 李晓君(Li X J), 郭红云(Guo H Y). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32(1): 127.
[50] 王英磊(Wang Y L), 罗军(Luo J). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33(9): 2016.
[51] Luo J, Xin T T, Wang Y L. New J. Chem., 2013, 37(2): 269.
[52] 职慧珍(Zhi H Z), 罗军(Luo J), 马伟(Ma W), 吕春绪(Lv C X). 高等学校化学学报(Chemical Journal of Chinese Universities), 2013, 34(3): 573.
[53] 戴燕(Dai Y), 李斌栋(Li B D), 吕春绪(Lv C X). 精细石油化工(Speciality Petrochemicals), 2009, 26(2): 40.
[54] Tan B, Jiang J Y, Wang Y H, Wei L, Chen D J, Jin Z L. Appl. Organomet. Chem., 2008, 22(11): 620.
[55] Zeng Y, Wang Y H, Jiang J Y, Jin Z L. Catal. Commun., 2012, 19: 70.
[56] Wei L, Jiang J Y, Wang Y H, Jin Z L. J. Mol. Catal. A: Chem., 2004, 221(1/2): 47.
[57] 郑明东(Zheng M D), 陈同云(Chen T Y ), 胡克良(Hu K L).高等学校化学学报(Chemical Journal of Chinese Universities), 2006, 27(6): 1086.
[58] 王会萍(Wang H P), 商艳梅(Shang Y M), 王磊(Wang L), 李叶芝(Li Y Z), 黄化民(Huang H M). 高等学校化学学报(Chemical Journal of Chinese Universities), 2006, 27(5): 894.
[59] 职慧珍(Zhi H Z), 罗军(Luo J), 马伟(Ma W), 吕春绪(Lv C X). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29(4): 772.
[60] Wu Q, Wan H, Li H, Song H, Chu T. Catal. Today, 2013, 200(1): 74.
[61] Laali K K, Gettwert V J. J. Org. Chem., 2001, 66(1): 35.
[62] Smith K, Liu S, El-Hiti G A. Ind. Eng. Chem. Res., 2005, 44(23): 8611.
[63] Fang D, Shi Q R, Cheng J, Gong K, Liu Z L. Appl. Catal. A, 2008, 345(2): 158.
[64] Wang P C, Lu M. Tetrahedron Lett., 2011, 52(13): 1452.
[65] Mallat T, Baiker A. Chem. Rev., 2004, 104(6): 3037.
[66] Ghorbani-Choghamarani A, Azadi G. J. Iran. Chem. Soc., 2011, 8(4): 1082.
[67] Hajipour A R, Khazdooz L, Ruoho A E. J. Iran. Chem. Soc., 2011, 8(2): 382.
[68] Hu Y L, Lu M, Ge X T. J. Iran. Chem. Soc., 2013, 10(3): 453.
[69] Lu T T, Mao Y, Yao K, Xu J, Lu M. Catal. Commun., 2012, 27: 124.
[70] Beste G W, Hammett L P. J. Am. Chem. Soc., 1940, 62: 2481.
[71] Saramma K, Anantarman R. Proc. Indian Acad. Sci. Sect. A, 1959, 49(2): 111.
[72] Shi M, Feng Y S. J. Org. Chem., 2001, 66(9): 3235.
[73] Leonid G M, Andrei V V, Olga S K, Oleg M N. Mendeleev Commun., 1995, 5(6): 223.
[74] Xing M K, Si Q C, Juan D, Xiao Q Y, Xian C Z. J. Mol. Catal. A: Chem., 2004, 210(1/2): 23.
[75] Bazzicalupi C, Bencini A, Berni E, Di Vaira M. Inorg. Chim. Acta, 2005, 358: 77.
[76] Mohile S S, Potdar M K, Harjani J R, Nara S J, Salunkhe M M, Swapnil S M, Mahesh K P. J. Mol. Catal. B: Enzylmatic., 2004, 30(5/6): 185.
[77] 蒋辉(Jiang H), 陆明(Lu M). 南京理工大学硕士论文, (Master Dissertation of Nanjing University of Science and Technology), 2011.
[78] Hu Y L, Jiang H, Zhu J, Lu M. New J. Chem., 2011, 35(2): 292.
[79] Wang L, Zhang Y H, Xie C S, Wang Y G. Synlett, 2005, 12: 1861.
[80] Li B, Li Y Q, Zheng J. ARKIVOC, 2010, 9: 163.
[81] Wang J Y, Xu B L, Sun H Y, Song G H. Tetrahedron Lett., 2013, 54(3): 238.
[82] Wang Y L, Luo J, Liu Z L. Appl. Organomet. Chem., 2013, 27(10): 601.
[83] Hu Y L, Lu M, Ge Q, Wang P C, Lu T T. J. Ind. Eng. Chem., 2010, 16 (4): 615.
[84] 陆鸿飞(Lu H F), 孙垒垒(Sun L L), 武鼎铭(Wu D M),高玉华(Gao Y H), 石亚丽(Shi Y L), 薛芹(Xue Q). 有机化学(Chinese Journal of Organic Chemistry), 2012, 32(10): 1880.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.