English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1324-1332 DOI: 10.7536/PC150122 前一篇   

• 综述与评论 •

离子液体及离子液体膜在天然气净化方面的应用

孟艳山1, 陈玉焕2*, 邓雨晨2, 张姝明2, 王桂香2   

  1. 1. 中国石油天然气管道局四公司 廊坊 065000;
    2. 河北工业大学化工学院 天津 300130
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 陈玉焕 E-mail:yhchen@hebut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21206027, 21576064)资助

Perspectives on Ionic Liquids and Ionic Liquid Membranes for Natural Gas Sweetening

Meng Yanshan1, Chen Yuhuan2*, Deng Yuchen2, Zhang Shuming2, Wang Guixiang2   

  1. 1. No.4 Company, China Petroleum Pipeline Bureau, Langfang 065000, China;
    2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21206027, 21576064).
天然气净化对天然气这一清洁、高效的一次能源及我国快速增长的消费需求具有重要的战略意义。离子液体因挥发性低、溶解能力强、结构和性质可调控性强等优点,在离子液体膜净化气体方面获得高度关注。本文系统地总结了离子液体膜富集分离CO2及其他气体的性能,包括常规离子液体、功能化离子液体、聚合物离子液体、离子液体混合物;讨论了离子液体结构(如阳离子取代基链长、取代基对称性、阴离子结构大小、阴离子氟化)、膜支撑材料性能(如水溶性、孔径大小)及水含量等因素对膜性能的影响;对各种方法的优缺点及使用条件进行详细的阐述;并提出今后离子液体膜在气体净化方面的发展方向。
Natural gas sweetening, especially CO2 cleaning, is an important prerequisite in many different applications and industrial areas for meeting increased environmental requirements. Ionic liquids as green solvents have attracted great attention due to the unique properties, e.g., extremely low vapor pressure, non-flammable, excellent solvent power for organic and inorganic compounds and easy to be modified structurally to elicit desired physical properties. As a result, ionic liquid membranes are emerging as promising candidates rivaling with conventional amine scrubbing. This brief review presents a survey of the most recent development in ionic liquid membranes for natural gas sweetening. Membranes based on all kinds of ionic liquids, e.g., conventional ionic liquids, task-specific ionic liquids, polymeric ionic liquids and ionic liquid mixtures have been reviewed. The properties of ionic liquids are greatly affected by structures, such as alkyl chain length on cation, anion size and functionalization of both cations and anions. In addition to the above effects, performances of ionic liquid membranes are also involved in pore size and hydrophobicity/hydrophilicity of supporting membranes, humidity/water content and free ionic liquids in poly ionic liquids. Furthermore, the future developments of ionic liquid membranes for gas sweetening are suggested aiming to expand these membranes to large scale processes.

Contents
1 Introduction
2 Kinds of ionic liquids
3 Ionic liquid membranes for acid gas capture
3.1 Membranes based on conventional ionic liquid
3.2 Membranes based on task-specific ionic liquid
3.3 Membranes based on polymerized ionic liquid
3.4 Membranes based on ionic liquid mixture
4 Conclusions and outlook

中图分类号: 

()
[1] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399: 28.
[2] Lee S H, Kim B S, Lee E W, Park Y I, Lee J M. Desalination, 2006, 200: 21.
[3] Walden P. Bull. Acad. St. Petersburg: Imper. Sci., 1914. 1800.
[4] Wilkes J S, Zaworotko M J. J. Chem. Soc. Chem.Commun., 1992, 13: 965.
[5] Quinn R, Appleby J B, Pez G P. J. Membr. Sci., 1995, 104: 139.
[6] Cserjési P, Nemestóthy N, Bélafi-Bakó K. J. Membr. Sci., 2010, 349: 6.
[7] Robeson L M. J. Membr. Sci., 2008, 320: 390.
[8] Taniguchi I, Fujikawa S. Energy Procedia, 2014, 63: 235.
[9] Close J J, Farmer K, Moganty S S, Baltus R E. J. Membr. Sci., 2012, 390: 201.
[10] Neves L A, Crespo J G, Coelhoso I M. J. Membr. Sci., 2010, 357: 160.
[11] Zhao W, He G, Zhang L, Ju J, Dou H, Nie F, Li C, Liu H. J. Membr. Sci., 2010, 350: 279.
[12] Cheng L H, Rahaman M S A, Ru Yao R, Zhang L, Xu X H, Chen H L, Lai J Y, Tung K L. Int. J. Greenhouse Gas Control, 2014, 21: 82.
[13] Scovazzo P. J. Membrane Sci., 2009, 343: 199.
[14] Ilconicha J, Myersb C, Pennlineb H, Luebke D. J. Membr. Sci., 2007, 298: 41.
[15] Baltus R E, Counce R M, Culbertson B H, Luo H, Depaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2005, 40: 525.
[16] Barghi S H, Adibi M, Rashtchian D. J. Membr. Sci., 2010, 362: 346.
[17] Kreiter R, Overbeek J P, Correia L A, Vente J F. J. Membr. Sci., 2011, 370: 175.
[18] Mulder M. Basic Principles of Membrane Technology. 2nd ed. Kluwer Academic Publishers, 1996.
[19] Bates E D, Mayton R D, Ntai I, Davis Jr J H. J. Am. Chem. Soc., 2002, 124: 926.
[20] Kasahara S, Kamio E, Matsuyama H. J. Membr. Sci., 2014, 454: 155.
[21] Kasahara S, Kamio E, Ishigami T, Matsuyama H. J. Membr. Sci., 2012, 415/416: 168.
[22] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membr. Sci., 2008, 314: 1.
[23] Albo J, Yoshioka T, Tsuru T. Sep. Purif. Technol. 2014, 122: 440.
[24] Santos E, Albo J, Irabien A. J. Membrane Sci., 2014, 452: 277.
[25] Mahurin S M, Lee J S, Baker G A, Luo H, Dai S. J. Membr. Sci., 2010, 353: 177.
[26] Freemantle M. Chem. Eng. News, 2000, 78(20): 37.
[27] Bhavsar R S, Kumbharkar S C, Kharul U K. J. Membr. Sci., 2014, 470: 494.
[28] Bhavsar R S, Kumbharkar S C, Kharul U K. J. Membr. Sci., 2012, 389: 305.
[29] Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. J. Membr. Sci., 2010, 350: 117.
[30] Hudiono Y C, CarlisleT K, LaFrate A L, Gin D L, Noble R D. J. Membr. Sci., 2011, 370: 141.
[31] Tomé L C, Mecerreyes D, Freire C S R, Rebelo L P N, Marrucho I M. J. Membr. Sci., 2013, 428: 260.
[32] Hao L, Li P, Yang T, Chung T S. J. Membr. Sci., 2013, 436: 221.
[33] Liang L, Gan Q, Nancarrow P. J. Membr. Sci., 2014, 450: 407.
[34] Lee S H, Kim B S, Lee E W, Park Y I, Lee J M. Desalination, 2006, 200: 21.
[35] Uchytil P, Schauer J, Petrychkovych R, Setnickova K, Suen S Y. J. Membr. Sci., 2011, 383: 262.
[36] Cho E K, Park J S, Sekhon S S, Park G G,Yang T H, Lee W Y, Kim C S, Park S B. J. Electrochem. Soc., 2009, 156(2): B197.
[37] Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. J. Membr. Sci., 2010, 350: 117.
[38] Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. J. Membr. Sci., 2013, 430: 211.
[39] Daletou M K, Kallitsis J K, Voyiatzis G, Neophytides S G. J. Membr. Sci., 2009, 326: 76.
[40] Krull F F, Fritzmann C, Melin T. J. Membr. Sci., 2008, 325: 509.
[41] Kusakabe K, Ichiki K, Hayashi J, Maeda H, Morookab S. J. Membr. Sci., 1996, 115: 65.
[42] Xu Z K, Xiao L, Wang J L, Springer J. J. Membr. Sci., 2002, 202: 27.
[43] Scovazzo P, Havard D, McShea M, Mixon S, Morgan D. J. Membr. Sci., 2009, 327: 41.
[1] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[2] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[3] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[4] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[5] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[6] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[7] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[8] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[9] 李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺. 锡基钙钛矿太阳电池光吸收材料[J]. 化学进展, 2019, 31(6): 882-893.
[10] 曹宁宁, 卢松涛, 姚锐, 李慧敏, 秦伟, 吴晓宏. 太阳光谱选择性吸收涂层[J]. 化学进展, 2019, 31(4): 597-612.
[11] 杨欣达, 姜琴, 施鹏飞*. 具有双光子效应的多核配合物[J]. 化学进展, 2018, 30(8): 1172-1185.
[12] 刘丽影, 宫赫, 王哲, 李刚, 杜涛. 捕集高湿烟气中CO2的变压吸附技术[J]. 化学进展, 2018, 30(6): 872-878.
[13] 黄池宝*, 陈绍英. 双光子荧光探针[J]. 化学进展, 2017, 29(10): 1215-1227.
[14] 卢晓梅, 陈鹏飞, 胡文博, 唐玉富, 黄维, 范曲立. 有机光电材料在光声成像领域的应用[J]. 化学进展, 2017, 29(1): 119-126.
[15] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.