English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1462-1481 DOI: 10.7536/PC200122 前一篇   后一篇

• 综述 •

炼化反渗透浓水中有机物处理技术

王均凤1, 王毅霖2, 张晓飞2, 王道广1, 李亚辉1, 何宏艳1, 李兴春2,**(), 张锁江1,**()   

  1. 1.中国科学院过程工程研究所离子液体清洁过程北京市重点实验室 多相复杂系统国家重点实验室 北京 100190
    2.中国石油集团安全环保技术研究院有限公司 石油石化污染物控制处理国家重点实验室 北京 102206
  • 收稿日期:2020-01-19 修回日期:2020-07-13 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 李兴春, 张锁江
  • 基金资助:
    国家自然科学基金项目(21978302); 国家自然科学基金项目(21890762); 国家自然科学基金项目(21921005); 中国科学院绿色过程制造创新研究院(IAGM2020DB05); 中国科学院前沿科学重点研究项目资助(QYZDY-SSW-JSC011)

Technologies of Removal of Organics in Reverse Osmosis Concentrates from Petroleum Refinery Wastewater

Junfeng Wang1, Yilin Wang2, Xiaofei Zhang2, Daoguang Wang1, Yahui Li1, Hongyan He1, Xingchun Li2,**(), Suojiang Zhang1,**()   

  1. 1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
  • Received:2020-01-19 Revised:2020-07-13 Online:2020-10-24 Published:2020-09-02
  • Contact: Xingchun Li, Suojiang Zhang
  • About author:
    **e-mail:(Suojiang Zhang)
  • Supported by:
    National Natural Science Foundation of China(21978302); National Natural Science Foundation of China(21890762); National Natural Science Foundation of China(21921005); Innovation Academy for Green Manufacture, Chinese Academy of Sciences(IAGM2020DB05); Key Research Program of Frontier Sciences CAS(QYZDY-SSW-JSC011)

双膜工艺作为一种有效的废水处理方法,已被炼化企业广泛采用。然而,该工艺在使用过程中会产生一定量的含有机物高盐反渗透浓水(ROCs)。在国家排放标准对废水外排指标日趋严格的情况下,反渗透浓水直接外排已被禁止。因此,含有机物高盐反渗透浓水处理技术成为研究的热点。本文对炼化反渗透浓水处理技术研究进展进行综述和讨论。首先本文对不同炼化企业反渗透浓水的组成进行了汇总和分析; 其次,对反渗透浓水中有机物的去除技术,如物理化学方法、高级氧化法和生化方法等,进行了详细讨论,并深入分析了新兴高级氧化工艺的机理和优缺点; 最后对炼化反渗透浓水中盐回收技术进行了讨论。

The reverse osmosis concentrates (ROCs) with high concentration of chemical oxygen demand and salts are produced by a double-membrane technology, which has been widely used to treat the wastewaters from petroleum refinery enterprises. The ROCs are prohibited from directly discharging from environmental point of view and must be treated to comply with the tighter discharge limits of wastewater and solid wastes per the upgrading national emission standard. Therefore, effective technologies for the removal of organic matter and recovery of salts from ROCs have been committed to be developed. In this review, the recent progress on the treatment technologies of ROCs from petroleum refinery waste waters are summarized and discussed. Firstly, the compositions of ROCs, the basis of developing the treatment process, from several petroleum refinery plants are collected and analyzed. Subsequently, the removal methods of organic contaminants, such as physicochemical method, advanced oxidation method, and biochemical method, are elaborated in detail. Especially for some innovative advanced oxidation processes, including O3 oxidation, Fenton method, electrochemical oxidation, photocatalytic oxidation, and ozonation-based combination processes, and their mechanisms, advantages and disadvantages for the treatment of ROCs from industrial sources are emphasized comprehensively. Finally, the methods of salts’ recovery from ROCs are also discussed briefly.

Contents

1 Introduction

2 The compositions of ROC from petroleum refinery wastewater

3 Organic matter removal in ROC from petroleum refinery wastewater

3.1 Physicochemical method

3. 2 Advanced oxidation processes ( AOPs)

3.3 Biochemical method

4 Recovery of salts in ROCs from petroleum refinery wastewater

5 Conclusions

()
Table 1 Characteristics of ROC from petroleum refinery wastewater
Fig.1 Applicability of water treatment technologies based on the amount of organic load[42]
Table 2 Oxidation-reduction potential of oxidants
Fig. 2 The cycle of photo-Fenton reactions[62]
Fig. 3 Mechanisms of photocatalytic oxidation
[1]
Wang D X, Tong F, Aerts P. Desalination and Water Treatment, 2011,25:133.
[2]
Dai X L, Chen C M, Yan G X, Chen Y, Guo S H. Journal of Environmental Science, 2016,50:49.
[3]
谢文玉(Xie W Y), 陈建军(Chen J J), 钟理(Zhong L), 钟华文(Zhong H W) 化工学报 (Journal of Chemical Industry and Engineering (China)), 2008,59:1251.
[4]
Xu X, Zhu X. Journal of Chemical Chemosphere, 2004,56:889.

URL     pmid: 15268954
[5]
方忠海(Fang Z H), 薛家慧(Xue J H), 仝志明(Tong Z M), 沈霖(Shen L) 工业水处理 (Industrial Watter Treatment), 2003,23:76.
[6]
Ibrahima M M, Jaddo I A. Tikrit Journal of Engineering Sciences, 2013,20:84.
[7]
El-Naas M H, Al-Zuhair S, Alhaija M A. Journal of Hazardous Materials, 2009,173:750.

URL     pmid: 19783364
[8]
El-Naas M H, Al-Zuhair S, Alhaija M A. Chemical Engingeering Journal, 2010,162:997.
[9]
El-Naas M H, Alhaija M A, Al-Zuhair S. Journal of Environmental Chemical Engineering, 2014,2:56.
[10]
Ibrahim D S, Lathalakshmi M, Muthukrishnaraj A, Balasubramanian N. Pet. Sci., 2013,10:421.
[11]
El-Naas M H, Al-Zuhair S, Al-Lobaney A, Makhlouf S. Journal of Environmental Management, 2009,91:180.

URL     pmid: 19717218
[12]
Zhong J, Sun X, Wang C. Separation & Purification Technology, 2003,32:93.
[13]
Manouchehr N, Amin R, Saleh A A. Journal of Water Chemistry and Technology, 2018,40:167.
[14]
Al-Malack M H. Desalinaiton and Water Treatment, 2016,57:8608.
[15]
Norouzbahari S, Roostaazad R, Hesampour M. Desalination, 2009,238:174.
[16]
Abbasi M, Sebzari M R, Abadi S R H, Mohammadi T, Mahmood . Desalination and Water Treatment, 2013,51:2543.
[17]
Venzke C D, Rodrigues M A S, Giacobbo A, Bacher L C, Lemmertz I S, Viegas C, Striving J, PozzebonS . Management of Environmental Quality, 2017,28:70.
[18]
Pérez-González A, Urtiaga A M, Ibáñez R, Ortiz I. Water Research, 2012,46:267. doi: 10.1016/j.watres.2011.10.046

URL     pmid: 22119366
[19]
夏季祥(Xia J X). 生产与环境 (Safety Health & Environment), 2013,13:29.
[20]
禚青倩(Zhuo Q Q), 曹晓磊(Cao X L), 李本高(Li B G). 石油炼制与化工 (Petroleum Processing and Petrochemicals), 2018,49:93.
[21]
丁洁(Ding J), 丁昀(Ding Y), 杨庆(Yang Q), 魏巍(Wei W), 陈存凯(Chen C K), 肖萍(Xiao P). 应用化工 (Applied Chemical Industry), 2017,46:1536.
[22]
龚小芝(Gong X Z), 赵辉(Zhao H), 万国辉(Wan G H), 刘正(Liu Z), 栾金义(Luan J Y). 化工环保 (Environmental Protection of Chemical Industry), 2012,32:428.
[23]
白小霞(Bai X X), 杨庆(Yang Q), 丁昀(Ding Y). 现代化工 (Modern Chemical Industry), 2016,36:58.
[24]
Zhou T, Lim T T, Chin S S, Fane A G. Chemical Engineering Journal, 2011,166:932.
[25]
赵朝成(Zhao C C), 焦叙来(Jiao X L), 崔爱玲(Cui A L), 刘春爽(Liu C S). 广州化工 (Guangzhou Chemical Industry), 2014,42:6.
[26]
李常青(Li C Q), 刘发强(Liu F Q), 江岩(Jiang Y), 荣树茂(Rong S M), 杨岳(Yang Y), 刘光利(Liu G L). 石化科技与应用 (Petrochemical Technology & Application), 2015,33:258.
[27]
王超(Wang C), 赵旭(Zhao X), 侯子义(Hou Z Y), 杨桂蓉(Yang G R), 冒冉(Mao R). 环境工程学报 (Chinese Journal of Environmental Engineering), 2014,8:3189.
[28]
Chen Y, Chen C M, Yoza B A, Li Q X, Wang Q H. Petroleum Science, 2017,14:605.
[29]
徐传海(Xu C H), 魏新(Wei X), 郦和生(Li H S), 王岽(Wang D). 化工环保 (Environmental Protection of Chemical Industry), 2011,31:148.
[30]
薛建良(Xue Q L), 赵东风(Zhao D F), 李石(Li S), 安慧(An H), 欧阳振宇(Ouyang Z Y). 工业水处理 (Industry Water Treatment), 2011,31:22.
[31]
曹宏伟(Cao H W), 徐海波(Xu H B), 李强(Li Q). 广东化工 (Guangdong Chemical Engineering), 2013,24:109.
[32]
郭瑞丽(Guo R L), 石玉(Shi Y), 王增长(Wang Z Z). 水处理技术 (Technology of Water Treatment), 2013,39:1.
[33]
徐海波(Xu H B), 孙健(SunJ), 程鑫(ChengX), 施雷(ShiL). 工业水处理 (Industry Water Treatment), 2019,1:110.
[34]
蔡巧燕(Cai Q Y). 新疆有色金属 (Xinjiang Nonferrous Metal), 2015,4:74.
[35]
付丽君(Fu L J), 赵玉增(ZhaoY Z), 葛红花(GeH H). 上海电力学院学报 (Journal of Shanghai University of Electric Power), 2012,28:242.
[36]
何未雨(He W Y). 污染防治技术 (Pollution Control Technology), 2014,3:19.
[37]
刘艳军(Liu Y J), 周艳(Zhou Y). 工业水处理 (Industry Water Treatment), 2019,12:107.
[38]
Amjad Z, Koutsoukos P G. Desalination, 2014,335:55.
[39]
Li L B, Yan S, Han C B, Shan G B. Chemosphere, 2005,60:467. doi: 10.1016/j.chemosphere.2005.01.012

URL     pmid: 15950039
[40]
李英芝(Li Y Z), 詹亚力(ZhanY L), 张华(ZhangH), 吴百春(WuB C) 高校化学工程学报 (Journal of Chemical Engineering of Chinese Universities), 2014,3:665.
[41]
Li Y Y, Fang Z, He C, Zhang Y H, Xu C M, Chung K H, Shi Q. Energy Fuels, 2015,29:6956.
[42]
杨艳灵(Yang Y L), 袁艳林(YuanY L), 韦晓竹(WeiX Z), 张光辉(ZhangG H), 顾平(Gu P). 给水排水 (Water & Wastewater Engineering), 2015,41:119.
[43]
Lee K E, Morad N, Teng T T, Poh B T. Chemical Engineering Journal, 2012,23:370.
[44]
Jiao R Y, Fabris R, Chow C W K, Drikas M, Van Leeuwen J, Wang D S, Xu Z Z. Journal of Environmental Sciences, 2017,57:338.
[45]
Szlachta M, Adamski W. Ochrona Srodowiska, 2008,30:39.
[46]
Bagastyo A Y, Keller J, Poussade Y. Water Research, 2011,45:2415. doi: 10.1016/j.watres.2011.01.024

URL     pmid: 21371733
[47]
于玥(Yu Y), 邓柏杰(Deng B J). 黑龙江水利科技 (Heilongjiang Science and Technology of Water Conservancy), 2015,43:24.
[48]
沈飞(Shen F), 刘阳(LiuY), 严滨(YanB), 李清彪(LiQ B). 工业水处理 (Industrial Water Treatment), 2007,26:417.
[49]
朱秋实(Zhu Q S), 陈进富(ChenJ F), 姜海洋(JiangH Y), 郭绍辉(GuoS H), 刘洪达(Liu H D). 化工进展 (Chemical Industry and Engineering Progress), 2014,33:1010.
[50]
Chen C M, Yoza B A, Wang Y D, Wang P, Li Q X, Guo S H, Yan G X. Environmental Science and Pollution Research, 2015,22:5552.

URL     pmid: 25649390
[51]
佘红梅(She H M), 韩玉杰(Han Y J). 环境影响评价 (Environmental Impact Assessment), 2017,2:18.
[52]
Hansson H, Kaczala F, Marques M, Hogland W. International Journal of Photoenergy, 2012,6:1.
[53]
Antonin V S, Assupmcão M H M T, Silva J C M, Parreira L S, Lanza M R V, Santos M C. Electrochimica Acta, 2013,109:245.
[54]
范冬琪(Fan D Q), 魏健(WeiJ), 徐东耀(XuD Y), 涂响(TuX), 宋永会(Song Y H) 环境工程技术学报 (Journal of Environmental Engineering Technology), 2015,5:271.
[55]
Zhang A P, Gu Z P, Chen W M, Li Q B, Jiang G B. Environmental Science and Pollution Research, 2018,25:28907.
[56]
孙准天(Sun Z T), 滕巧丽(Teng Q L). 环境科学与管理 (Environmental Science and Management), 2017,42:84.
[57]
王晓(Wang X). 给水排水 (Water Supply and Drainage), 2015,2:59.
[58]
Davarnejad R, Sahraei A. Desalination and Water Treatment, 2015,57:1.
[59]
Yavuz Y, Koparal A S, Öğütveren Ü. B. Desalination and Water Treatment, 2010,258:201.
[60]
Yan L, Wang Y F, Li J, Ma H Z, Liu H J, Li T, Zhang Y J. Desalination, 2014,341:87.
[61]
Du H L, Pan B Y, Li J. Advanced Materials Research, 2014,955/959:2294.
[62]
Handa M, Lee Y, Shibusawa M, Tokumura M, Kawase Y. Journal of Chemical Technology and Biotechnology, 2013,88:88.
[63]
郭琇(Guo X), 孙宏伟(Sun H W). 工业水处理 (Industrial Water Treatment), 2010,30:64.
[64]
Mohadesi M, Shokri A. International Journal of Environment Science, 2018,2018:1.
[65]
王奇(Wang Q), 潘家荣(PanJ R), 梅朋森(MeiP S), 黄应平(HuangY P). 三峡大学学报 (Journal of China Three Gorges University), 2008,30:89.
[66]
Sirés I, Brillas E, Oturan M A, Rodrigo M, Panizza M. Environmental Science and Pollution Research, 2014,21:8336.

URL     pmid: 24687788
[67]
Barrera-Díaz C, Cañizares P, Fernández F J, Natividad R, Rodrigo M A. Journal of the Mexican Chemical Society, 2014,58:256.
[68]
Rocha J H B, Gomes M M S, Fernandes N S, Silva D R D, Carlos A M H. Fuel Processing Technology, 2012,96:80.
[69]
Garcia-Segura S, Ocon J D, Chong M N. Process Safety and Environmental Protection, 2018,113:48.
[70]
Bagastyo A Y, Batstone D J, Kristiana I, Gernjak W, Joll C, Radjenovic J. Water Research, 2012,46:6104. doi: 10.1016/j.watres.2012.08.038

URL     pmid: 22995242
[71]
da Silva S W, Navarro E M O, Rodrigues M A S, Bernardes A M, Pérez-Herranz V. Chemosphere, 2018,210:615.

URL     pmid: 30031345
[72]
da Silva S W, Venzke C D, Welter J B, Schneider D, Ferreira J, Rodrigues M A, Bernardes A. Int. J. Environ. Res. Pub. Health, 2019,16:816.
[73]
Gargouri B, Gargouri O D, Gargouri B, Trabelsi S K, Abdelhedi R, Bouaziz M. Chemosphere, 2014,117:309.

URL     pmid: 25129707
[74]
Santos I D, Dezotti M, Dutra A J B. Chem. Eng. J., 2013,226:293.
[75]
沈洪源(Shen H Y), 李忠才(Li Z C). 工业水处理 (Industry Water Treatment), 2015,8:110.
[76]
李凯(Li K), 孙南南(SunN N), 谢实涛(XieS T), 陈英文(ChenY W), 沈树宝(Shen S B). 环境污染与防治 (Environmental Pollution and Control), 2014,36:17.
[77]
Ramalho A M Z, Carlos A M H, Silva D R D. Fuel, 2010,89:531.
[78]
da Silva A J C, Dos Santos E V, Carla D O M C, Carlos A M H, Castro S S L. Chem. Eng. J., 2013,233:47.
[79]
Zhang H, Wang X Y, Li N, Xia J H, Meng Q M, Ding J C, Lu J. RSC Advances, 2018,8:34241. doi: 10.1039/C8RA06681G
[80]
Zou X W, Dong X L, Wang L M, Ma H C, Zhang X X, Zhang X F. International Journal of Photoenergy, 2014,2014:1.
[81]
Lee A, Libera J A, Waldman R Z, Ahmed A, Avila J R, Elam J W, Darling S B. Advanced Sustainable Systems, 2017,1:1.
[82]
李进辉(Li J H), 丁慧(DingH), 张秀霞(ZhangX X), 刘娜(LiuN), 黄文升(Huang W S). 油气田环境保护 (Environmental Protection of Oil & Gas Fields), 2013,23:15.
[83]
傅键记(Fu J J), 张建寰(ZhangJ H), 俞惠敏(YuH M). 厦门大学学报 (Journal of Xiamen University), 2007,46:372.
[84]
张冬梅(Zhang DM), 谢文玉(XieW Y), 谢颖(XieY), 卢文勇(LuW Y), 潘炳新(Pan B X). 化工生产与技术 (ChemicaI Production and TechnoIogy), 2003,10:14.
[85]
张晓娟(Zhang X J). 甘肃科技 (Gansu Science and Technology), 2017,33:32.
[86]
谷俊标(Gu J B). 辽宁化工 (Liaoning Chemical Industry), 2004,33:273.
[87]
Wang B, Zhang H, Wang F F, Xiong X G Y, Tian K, Sun Y B, Yu T T. Catalysts, 2019,9:241.
[88]
李亮(Li L), 阮晓磊(RuanX L), 滕厚开(TengH K), 郑书忠(ZhengS Z), 陈军(Chen J), 于海斌(Yu H B), 张艳芳(Zhang Y F), 苗静(Miao J). 工业水处理 (Industrial Water Treatment), 2011,31:43.
[89]
蒋广安(Jiang G A), 赵越(ZhaoY), 李宝忠(LiZ B), 郭宏山(GuoH S). 当代化工 (Contemporary Chemical Industry), 2018,47:749.
[90]
Mehrjouei M J, Müller S, Möller D. Chemical Engineering Journal, 2015,263:209.
[92]
Corrêa A X R, Tiepo E N, Somensi C A, Sperb R M, Radetski C M. Journal of Environmental Engineering, 2010,136:40.
谢陈鑫(Xie C X), 滕厚开(TengH K), 李肖琳(LiX L), 秦微(QinW), 赵慧(Zhao H), 郑书忠(Zheng S Z), 张艳芳(Zhang Y F). 环境工程学报 (Chinese Journal of Environment Engineering), 2014,8:2865.
[93]
Bernal-Martínez L A, Barrera-Díaz C, Solís-Morelos C, Natividad R. Chem. Eng. J., 2010,165:71.
[94]
García-Morales M A, Roa-Morales G, Barrera-Díaz C, Biyeu B, Rodrigo M A. Electrochemistry Communications, 2013,27:34.
[95]
康群, 马文臣(MaW C), 徐建民(XuJ M), 刘光金(LiuJ G) , 付方伟(Fu F W). 环境污染治理技术与设备 (Techniques and Equipment for Environmental Pollution Control), 2005,6:42.
[96]
卢欣(Lu X), 李兴春(LiX C), 白瑶(BaiY), 闫萍(YanP), 张晓飞(Zhang X F), 冯成亮(Feng C L), 林朋飞(Lin P F). 油气田环境保护 (Environmental Protection of Oil & Gas Fields), 2015,25:74.
[97]
黄敬(Huang J). 油气田环境保护 (Environmental Protection of Oil & Gas Fields), 2010,20:43.
[98]
Wang L. Earth and Environmental Science, 2018,108:1.
[99]
刘正(Liu Z), 彭海珠(PengH Z), 孙杰(SunJ), 赵辉(ZhaoH), 龚小芝(Gong X Z), 侯秀华(Hou X H) 化工环保 (Environmental Protection of Chemical Industry), 2012,32:535.
[100]
卢少红(Lu S H), 施明清(Shi M Q). 环境科学导报 (Environmental Science Survey), 2013,32:78.
[101]
Wang X L, Christ A, Regenauer-Lie , K , Hooman K, Chua H T. International Journal of Heat and Mass Transfer, 2011,54:5497.
[102]
Zhao D F, Liu T Z, Xue J L, Lia S, Lia C. Desalination and Water Treatment, 2015,57:11721.
[103]
Zhao D F, Xue J L, Li S, Sun H, Zhang Q D. Desalination, 2011,273:292. doi: 10.1016/j.desal.2011.01.048
[104]
刘天柱(Liu T Z), 赵东风(ZhaoD F), 李石(LiS), 薛建良(XueJ L), 刘伟(Liu W), 张华(Zhang H). 工业安全与环保 (Industrial Safety and Environmental Protection), 2015,41:46.
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[3] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[4] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[5] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[6] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[7] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[8] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[9] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[10] 鲍恋君, 郭英, 刘良英, 曾永平*. 珠江三角洲典型有机污染物的环境行为及人群暴露风险[J]. 化学进展, 2017, 29(9): 943-961.
[11] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[12] 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 27(8): 1123-1132.
[13] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[14] 张峰振, 吴超飞, 胡芸, 韦朝海. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(06): 1079-1098.
[15] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(05): 898-908.