English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 1079-1098 DOI: 10.7536/PC131134 前一篇   

• 综述与评论 •

卤代有机污染物的光化学降解

张峰振, 吴超飞, 胡芸, 韦朝海*   

  1. 华南理工大学环境与能源学院 工业聚集区污染控制与生态修复教育部重点实验室 广州 510006
  • 收稿日期:2013-11-01 修回日期:2014-01-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 韦朝海 E-mail:cechwei@scut.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(No. 21037001)和国家高技术研究发展计划(863)滚动项目(No. 2009AA06Z319)资助

Photochemical Degradation of Halogenated Organic Contaminants

Zhang Fengzhen, Wu Chaofei, Hu Yun, Wei Chaohai*   

  1. The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
  • Received:2013-11-01 Revised:2014-01-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the Key Program of National Natural Science Foundation of China (No. 21037001) and the National High Technology Research and Development Program of China (No. 2009AA06Z319)

包括全氟或部分氟代化合物(PFCs)、氯代有机物(COCs)以及溴代有机物(BOCs)等的卤代有机污染物(halogenated organic contaminants,HOCs)排放到环境中会表现出持久性有机污染物的特征,因此涉及HOCs性质、光吸收与量子效应、材料与界面特性、环境条件等方面优化的光化学清除方法成为一个重要的研究方向。基于此,本文归纳分析了光激发催化剂产生活性物种如hVB+eCB-、 ·OH、eaq-等氧化或还原全氟辛酸、多氯联苯、多溴联苯醚的反应机理及直接光解机理,指出HOCs的光化学降解主要是通过其与活性物种之间电子转移或其激发态光致还原脱卤来实现,认为光催化材料和反应过程优化设计是影响光催化降解HOCs的重要因素。基于目前已经取得的研究发现与成果,从界面电子转移、材料能带信息、反应与分离集成化等方面提出本领域未来学术与技术层面值得深入探索的关键问题。

Halogenated organic contaminants (HOCs), including perfluorinated or partially fluorinated chemicals (PFCs), chlorinated organic compounds (COCs) and brominated organic compounds (BOCs), show the characteristics of persistent organic pollutants after they are discharged into the environment. Optimized photochemical elimination methods, which involve the pollutant properties, light adsorption and quantum yield, interfacial interaction and environmental conditions, are promising techniques for controlling the potential risk of HOCs. The present review summarizes the mechanisms of photocatalytic degradation of perfluorooctanoic acid (PFOA), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) by photo-generated radical species (eg, hVB+, eCB-, ·OH, eaq-) on photocatalyst as well as the mechanisms of direct photolysis. The photochemical degradation of HOCs can be achieved through the electron transfer between HOCs and reactive radical species or photo-induced reduction from the excited state of HOCs. Optimazation designs of photocatalyst and reaction process are important factors for the photocatalytic degradation of HOCs. Based on the currently achieved research results, some key issuses for the future are proposed from some aspects such as the interfacial electron transfer, the information of band structure, and the integration of reaction and separation.

Contents
1 Introduction
2 The mechanisms of photochemical degradation of HOCs
2.1 The photocatalytic degradation of HOCs
2.2 The direct photolysis of HOCs
3 Influencing factors on photocatalytic degradation of HOCs
3.1 Effect of photocatalytic materials
3.2 Effect of reaction condition
4 Conclusions

中图分类号: 

()

[1] Giesy J P, Kannan K. Environ. Sci. Technol., 2002, 36(7): 146A.
[2] Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Environ. Sci. Technol., 2006, 40: 32.
[3] Ma R, Shih K. Environ. Pollut., 2010, 158(5): 1354.
[4] Houde M, Martin J M, Letcher R J, Solomon K R, Muir D C G. Environ. Sci. Technol., 2006, 40: 3463.
[5] Luebker D J, York R G, Hansen K J, Moore J A, Butenhoff J L. Toxicology, 2005, 215(1/2): 149.
[6] Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2002, 102: 4009.
[7] Liu X T, Zhao W, Sun K, Zhang G X, Zhao Y. Chemosphere, 2011, 82: 773.
[8] Maddila S, Dasireddy V D B C, Oseghe E O, Jonnalagadda S B. Appl. Catal. B: Environ., 2013, 142/143: 129.
[9] Keane M A. Green Chem., 2003, 5: 309.
[10] Kastanek F, Maleterova Y, Kastanek P, Rott J, Jiricny V, Jiratova K. Desalination, 2007, 211: 261.
[11] Gullett B K, Natschke D F, Bruce K R. Environ. Sci. Technol., 1997, 31: 1855.
[12] Sako T, Sugeta T, Otake K, Kamizawa C, Oknao M, Negishi A, Tsurumi C. J. Chem. Eng. Jpn., 1999, 32: 830.
[13] Li S J, Fang Y L, Romanczuk C D, Jin Z H, Li T L, Wong M S. Appl. Catal. B: Environ., 2012, 125: 95.
[14] Tang H Q, Xiang Q Q, Lei M, Yan J C, Zhu L H, Zou J. Chem. Eng. J., 2012, 184: 156.
[15] Lin A Y C, Panchangam S C, Chang C Y, Hong P K A, Hsueh H F. J. Hazard. Mater., 2012, 243: 272.
[16] Liao P, Yuan S H, Chen M J, Tong M, Xie W J, Zhang P. Environ. Sci. Technol., 2013, 47: 7918.
[17] Liu X, Yoon S, Batchelor B, Abdel-Wahab A. Chem. Eng. J., 2013, 215/216: 868.
[18] Zhang W H, Quan X, Wang J X, Zhang Z Y, Chen S. Chemosphere, 2006, 65: 58.
[19] Hu E D, Cheng H F, Hu Y A. Environ. Sci. Technol., 2012, 46: 5067.
[20] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.
[21] Hoffmann M R, Martin S T, Choi W Y, Bahnemannt D W. Chem. Rev., 1995, 95: 69.
[22] Devi L G, Kavitha R. Appl. Catal. B: Environ., 2013, 140/141: 559.
[23] Kubacka A, Fernández-García M, Colón G. Chem. Rev., 2012, 112: 1555.
[24] 牛军峰(Niu J F), 余刚(Yu G), 刘希涛(Liu X T). 化学进展(Progress in Chemistry), 2005, 17(5): 938.
[25] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995, 95: 735.
[26] Corma A, García H, Xamena F X L I. Chem. Rev., 2010, 110: 4606.
[27] Marin M L, Santos-Juanes L, Arques A, Amat A M, Miranda M A. Chem. Rev., 2012, 112: 1710.
[28] 李二军(Li E J), 陈浪(Chen L), 章强(Zhang Q), 李文华(Li W H), 尹双凤(Yin S F). 化学进展(Progress in Chemistry), 2010, 22(12): 2282.
[29] Sauer T, Neto G C, José H J, Moreira R F P M. J. Photochem. Photobiol. A: Chem., 2002, 149: 147.
[30] Piscopo A, Robert D, Weber J V. Appl. Catal. B: Environ., 2001, 35: 117.
[31] Sakkas V A, Albanis T A. Appl. Catal. B: Environ., 2003, 46: 175.
[32] Ertl G. Angew. Chem. Int. Ed., 1990, 29: 1219.
[33] Harris L A, Quong A A. Phys. Rev. Lett., 2004, 93: 086105.
[34] Schaub R, Thostrup P, Lopez N, Lgsgaard E, Stensgaard I, Nrskov J K, Besenbacher F. Phys. Rev. Lett., 2001, 87: 266104.
[35] Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012, 112: 5919.
[36] Henderson M A. Surf. Sci. Rep., 2011, 66: 185.
[37] Axelsson A K, Dunne L J. J. Photochem. Photobiol. A: Chem., 2001, 144: 205.
[38] Omar S, Palomar J, Gómez-Sainero L M, lvarez-Montero M A, Martin-Martinez M, Rodriguez J J. J. Phys. Chem. C, 2011, 115: 14180.
[39] Vasudevan D, Stone A T. Environ. Sci. Technol., 1996, 30: 1604.
[40] Huang H H, Tseng D H, Juang L C. J. Hazard. Mater., 2008, 156: 186.
[41] Li X J, Cubbage J W, Jenks W S. J. Org. Chem., 1999, 64: 8525.
[42] Tunesi S, Anderson M A. Langmuir, 1992, 8: 487.
[43] Martin S T, Kesselman J M, Park D S, Lewis N S, Hoffmann M R. Environ. Sci. Technol., 1996, 30: 2535.
[44] Li Z M, Zhang P Y, Shao T, Wang J L, Jin L, Li X Y. J. Hazard. Mater., 2013, 260: 40.
[45] Shao T, Zhang P Y, Jin L, Li Z M. Appl. Catal. B: Environ., 2013, 142/143: 654.
[46] Li X Y, Zhang P Y, Jin L, Shao T, Li Z M, Cao J J. Environ. Sci. Technol., 2012, 46: 5528.
[47] Kormann C, Bahnemann D W, Hoffmann M R. Environ. Sci. Technol., 1991, 25: 494.
[48] Li Z M, Zhang P Y, Shao T, Li X Y. Appl. Catal. B: Environ., 2012, 125: 350.
[49] Niu H Y, Cai Y Q. Anal. Chem., 2009, 81: 9913.
[50] Calvo P C, Angelomé V M, Sánchez D A, Scherlis F J, Williams G J, Soler-Illia A A. Chem. Mater., 2008, 20: 4661.
[51] Park H, Choi W. J. Phys. Chem. B, 2004, 108: 4086.
[52] Qu Y, Zhang C J, Li F, Chen J, Zhou Q. Water Res., 2010, 44: 2939.
[53] Song Z, Tang H Q, Wang N, Zhu L H. J. Hazard. Mater., 2013, 262: 332.
[54] Shoute L C T, Mittal J P. J. Phys. Chem., 1996, 100: 11355.
[55] Park H, Vecitis C D, Cheng J, Choi W, Mader B T, Hoffmann M R. J. Phys. Chem. A, 2009, 113: 690.
[56] Estrellan C R, Salim C, Hinode H. J. Hazard. Mater., 2010, 179: 79.
[57] Wang Y, Zhang P Y. J. Hazard. Mater., 2011, 192: 1869.
[58] Panchangam S C, Lin A Y C, Shaik K L, Lin C F. Chemosphere, 2009, 77: 242.
[59] Zhao B X, Lv M, Zhou L. J. Environ. Sci., 2012, 24(4): 774.
[60] Hori H, Yamamoto A, Koike K, Kutsuna S, Murayama M, Yoshimoto A, Arakawa R. Appl. Catal. B: Environ., 2008, 82: 58.
[61] Lee Y C, Lo S L, Kuo J, Huang C P. J. Hazard. Mater., 2013, 261: 463.
[62] Thi L A P, Do H T, Lee Y C, Lo S L. Chem. Eng. J., 2013, 221: 258.
[63] Colosi L M, Pinto R A, Huang Q G, Weber W J J. Environ. Toxicol. Chem., 2009, 28: 264.
[64] Niu J F, Lin H, Xu J L, Wu H, Li Y Y. Environ. Sci. Technol., 2012, 46: 10191.
[65] Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S. Environ. Sci. Technol., 2005, 39: 2383.
[66] Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Water Res., 2010, 44: 886.
[67] Cao M H, Wang B B, Yu H S, Wang L L, Yuan S H, Chen J. J. Hazard. Mater., 2010, 179: 1143.
[68] Wang Y, Zhang P Y. J. Hazard. Mater., 2011, 192: 1869.
[69] Surdhar P S, Mezyk S P, Armstrong D A. J. Phys. Chem., 1989, 93: 3360.
[70] Song C, Chen P, Wang C Y, Zhu L Y. Chemosphere, 2012, 86: 853.
[71] Lau C, Butenhoff J L, Rogers J M. Toxicol. Appl. Pharmacol., 2004, 198: 231.
[72] Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Environ. Sci. Technol., 2005, 39: 3388.
[73] Sundström M, Bogdanska J, Pham H V, Athanasios V, Nobel S, McAlees A, Eriksson J, DePierre J W, Bergman Å. Chemosphere, 2012, 87: 865.
[74] Torimoto T, Ito S, Kuwabata S, Yoneyama H. Environ. Sci. Technol., 1996, 30: 1275.
[75] Izadifard M, Langford C H, Achari G. Environ. Sci. Technol., 2010, 44: 9075.
[76] Poster D L, Chaychian M, Neta P, Huie R E, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 2003, 37: 3808.
[77] Choi W, Hong S J, Chang Y S, Cho Y. Environ. Sci. Technol., 2000, 34: 4810.
[78] Zacheis G A, Gray K A, Kamat P V. Environ. Sci. Technol., 2000, 34: 3401.
[79] Sheikhly M A, Silverman J. Environ. Sci. Technol., 1997, 31: 2473.
[80] 王春霞(Wang C X), 朱利中(Zhu L Z), 江桂斌(Jiang G B). 环境化学学科前沿与展望(Frontier and Prospect in Environmental Chemistry). 北京: 科学出版社(Beijing: Science Press), 2011. 500.
[81] Kiwi J, Lopez A, Nadtochenko V. Environ. Sci. Technol., 2000, 34: 2162.
[82] Yin L F, Niu J F, Shen Z Y, Chen J. Environ. Sci. Technol., 2010, 44: 5581.
[83] Izadifard M, Langford C H, Achari G. J. Hazard. Mater., 2010, 181: 393.
[84] Terzian R, Serpone N, Draper R B, Fox M A, Pelizzetti E. Langmuir, 1991, 7: 3081.
[85] Chaychian M, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 1999, 33: 2461.
[86] Stallard M L, Sherrard J H, Ogliaruso M A. J. Environ. Eng.-ASCE, 1988, 114: 1031.
[87] Hawarl J, Demeter A, Samson R. Environ. Sci. Technol., 1992, 26: 2022.
[88] Alfassi Z B, Marguet S, Neta P. J. Phys. Chem., 1994, 98: 8019.
[89] Jones C G, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 2003, 37: 5773.
[90] Ahn M Y, Filley T R, Jafvert C T, Nies L, Hua I, Bezares-Cruz J. Environ. Sci. Technol., 2006, 40: 215.
[91] An T C, Chen J X, Li G Y, Ding X J, Sheng G Y, Fu J M, Mai B X, O'Shea K E. Catal. Today, 2008, 139: 69.
[92] Raff J D, Hites R A. J. Phys. Chem. A, 2006, 110: 10783.
[93] Huang A Z, Wang N, Lei M, Zhu L H, Zhang Y Y, Lin Z F, Yin D Q, Tang H Q. Environ. Sci. Technol., 2013, 47: 518.
[94] Sun C Y, Zhao D, Chen C C, Ma W, Zhao J C. Environ. Sci. Technol., 2009, 43: 157.
[95] Guo Y G, Lou X Y, Xiao D X, Xu L, Wang Z H, Liu J S. J. Hazard. Mater., 2012, 241/242: 301.
[96] Renckens T J A, Almeida A R, Damen M R, Kreutzer M T, Mul G. Catal. Today, 2010, 155: 302.
[97] Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Environ. Sci. Technol., 2004, 38: 6118.
[98] Wang Y, Zhang P Y, Pan G, Chen H. J. Hazard. Mater., 2008, 160: 181.
[99] Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R. Chemosphere, 2007, 68: 572.
[100] Chu W, Chan H K, Kwan C Y, Jafvert C T. Environ. Sci. Technol., 2005, 39: 9211.
[101] Chu W, Jafvert C T, Diehl C A, Marley K, Larson R A. Environ. Sci. Technol., 1998, 32: 1989.
[102] Lin Y J, Teng L S, Lee A, Chen Y L. Chemosphere, 2004, 55: 879.
[103] Skoog D A, Holler F J, Nieman T A. Principles of Instrumental Analysis, 5th ed. Philadelphia: Harcourt Brace, 1998. 256.
[104] Manzano M A, Perales J A, Sales D, Quiroga J M. Chemosphere, 2004, 57: 645.
[105] Sun C Y, Chang W, Ma W H, Chen C C, Zhao J C. Environ. Sci. Technol., 2013, 47: 2370.
[106] Eriksson J, Green N, Marsh G, Bergman . Environ. Sci. Technol., 2004, 38: 3119.
[107] Keum S Y, Li Q X. Environ. Sci. Technol., 2005, 39: 2280.
[108] Christiansson A, Eriksson J, Teclechiel D, Bergman . Environ. Sci. Pollut. Res., 2009, 16: 312.
[109] Watanabe I, Tatsukawa R. Bull. Environ. Contam. Toxicol., 1987, 39: 953.
[110] Sderstrm G, Sellstrm U, De-Wit C A, Tysklind M. Environ. Sci. Technol., 2004, 38: 127.
[111] Lenoir D, Schramm K W, Hutzinger O, Schedel G. Chemosphere, 1991, 22: 821.
[112] Emeline A V, Zhang X, Jin M, Murakami T, Fujishima A. J. Phys. Chem. B, 2006, 110: 7409.
[113] Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H. Environ. Sci. Technol., 2010, 44: 5098.
[114] Parshetti G K, Doong R A. Appl. Catal. B: Environ., 2010, 100: 116.
[115] Liu L F, Chen F, Yang F L, Chen Y S, Crittenden J. Chem. Eng. J., 2012, 181/182: 189.
[116] Bae E, Choi W. Environ. Sci. Technol., 2003, 37: 147.
[117] Cho Y, Choi W, Lee C H, Hyeon T, Lee H I. Environ. Sci. Technol., 2001, 35: 966.
[118] Tanaka A, Fuku K, Nishi T, Hashimoto K, Kominami H. J. Phys. Chem. C, 2013, 117: 16983.
[119] Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2007, 111: 5259.
[120] Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110: 6503.
[121] 龚倩(Gong Q), 胡芸(Hu Y), 韦朝海(Wei C H). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2011, 30(6): 1367.
[122] Zhang Z, Wang C C, Zakaria R, Ying J Y. J. Phys. Chem. B, 1998, 102: 10871.
[123] Hartmann P, Lee D K, Smarsly B M, Janek J. ACS Nano, 2010, 4: 3147.
[124] Su K, Ai Z H, Zhang L Z. J. Phys. Chem. C, 2012, 116: 17118.
[125] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21(11): 2285.
[126] 闫世成(Yan S C), 罗文俊(Luo W J), 李朝升(Li Z S), 邹志刚(Zou Z G). 中国材料进展(Materials China), 2010, 29(1): 1.
[127] Gopal N O, Lo H H, Ke S Y C. J. Am. Chem. Soc., 2008, 130: 2760.
[128] Sakatani Y, Ando H, Okusako K, Koike H, Nunoshige J, Takata T, Kondo J N, Hara M, Domen K. J. Mater. Res., 2004, 19: 2100.
[129] Gao B, Liu L F, Liu J D, Yang F L. Appl. Catal. B: Environ., 2013, 129: 89.
[130] Zheng Y H, Zheng L R, Zhan Y Y, Lin X Y, Zheng Q, Wei K M. Inorg. Chem., 2007, 46: 6980.
[131] Choi W, Termin A, Hoffmann M R. Phys. Chem., 1994, 98(51): 13669.
[132] Chu W, Rao Y F. Chemosphere, 2012, 86: 1079.
[133] Wang J L, Yu Y, Zhang L Z. Appl. Catal. B: Environ., 2013, 136/137: 112.
[134] Li Y, Niu J F, Yin L F, Wang W L, Bao Y P, Chen J, Duan Y P. J. Environ. Sci., 2011, 23(11): 1911.
[135] Shiragami T, Shimizu Y, Hinoue K, Fueta Y, Nobuhara K, Akazaki I, Yasuda M. J. Photochem. Photobiol. A: Chem., 2003, 156: 115.
[136] Huang G L, Zhang S C, Xu T G, Zhu Y F. Environ. Sci. Technol., 2008, 42: 8516.
[137] Lan Q, Li F B, Liu C S, Li X Z. Environ. Sci. Technol., 2008, 42: 7918.
[138] Yue B, Zhou Y, Xu J Y, Wu Z Z, Zhang X, Zou Y F, Jin S L. Environ. Sci. Technol., 2002, 36: 1325.
[139] Chen Y C, Lo S L, Kuo J. Water Res., 2011, 45: 4131.
[140] Mahapatra S, Madras G, Row T N G. J. Phys. Chem. C, 2007, 111: 6505.
[141] Shi H X, Chen J Y, Li G Y, Nie X, Zhao H J, Wong P K, An T C. Appl. Mater. Interfaces, 2013, 5: 6959.
[142] Xiong Z G, Xu Y M, Zhu L Z, Zhao J C. Environ. Sci. Technol., 2005, 39: 651.
[143] Li X C, Ma J, Liu G F, Fang J Y, Yue S Y, Guan Y H, Chen L W, Liu X W. Environ. Sci. Technol., 2012, 46: 7342.
[144] Hu M Q, Wang Y, Xiong Z G, Bi D Q, Zhang Y H, Xu Y M. Environ. Sci. Technol., 2012, 46: 9005.
[145] 陈善亮(Chen S L), 朱耿臣(Zhu G C), 应鹏展(Ying P Z), 顾修全(Gu X Q), 高榆岚(Gao Y L). 环境化学(Environmental Chemistry), 2011, 30(5): 976.
[146] 白雪(Bai X), 李永利(Li Y L). 硅酸盐通报(Bulletin of the Chinese Ceramic Society), 2012, 31(1): 84.
[147] Zhang X, Ai Z H, Jia F L, Zhang L Z. J. Phys. Chem. C, 2008, 112: 747.
[148] Jiang J, Zhang X, Sun P B, Zhang L Z. J. Phys. Chem. C, 2011, 115: 20555.
[149] Kim H, Kim W, Mackeyev Y, Lee G S, Kim H J, Tachikawa T, Hong S, Lee S, Kim J, Wilson L J, Majima T, Alvarez P J J, Choi W, Lee J. Environ. Sci. Technol., 2012, 46: 9606.
[150] Kim W, Tachikawa T, Majima T, Choi W. J. Phys. Chem. C, 2009, 113: 10603.
[151] Li Z M, Zhang P Y, Li J G, Shao T, Jin L. J. Photochem. Photobiol. A: Chem., 2013, 271: 111.
[152] Chen A W, Zeng G M, Chen G Q, Hu X J, Yan M, Guan S, Shang C, Lu L H, Zou Z J, Xie G X. Chem. Eng. J., 2012, 191: 85.
[153] Wang W S, Wang D H, Qu W G, Lu L Q, Xu A W. J. Phys. Chem. C, 2012, 116: 19893.
[154] Su D S, Perathoner S, Centi G. Chem. Rev., 2013, 113: 5782.
[155] Rath D, Parida K M. Ind. Eng. Chem. Res., 2011, 50: 2839.
[156] Sun Z R, Wei X F, Hu X, Wang K, Shen H T. Colloid Surf. A-Physicochem. Eng. Asp., 2012, 414: 314.
[157] Estrellan C R, Salim C, Hinode H. React. Kinet. Catal. Lett., 2009, 98: 187.
[158] Wei W, Dai Y, Huang B B. J. Phys. Chem. C, 2009, 113: 5658.
[159] Wang Q, Geng B Y, Wang S Z. Environ. Sci. Technol., 2009, 43: 8968.
[160] Rayne S, Wan P, Ikonomou M G, Konstantinov A D. Environ. Sci. Technol., 2002, 36: 1995.
[161] Kieatiwong S, Nguyen L V, Hebert V R, Hackett M, Miller G C, Miille M J, Mitzel R. Environ. Sci. Technol., 1990, 24: 1575.
[162] Shi Z, Sigman M E, Ghosh M M, Dabestani R. Environ. Sci. Technol., 1997, 31: 3581.
[163] Boule P, Guyon C, Guyon J. Toxicol. Environ. Chem., 1984, 7: 97.
[164] Schmelling D C, Poster D L, Chaychian M, Neta P, Silverman J, Al-Sheikhly M. Environ. Sci. Technol., 1998, 32: 270.
[165] Yang B, Zhang Y F, Deng S B, Yu G, Lu Y H, Wu J H, Xiao J Z, Chen G, Cheng X B, Shi L L. Chem. Eng. J., 2013, 234: 346.
[166] Choi W, Hoffmann M R. Environ. Sci. Technol., 1995, 29: 1646.
[167] Lilie J, Beck G, Henglein A. Ber. Bunsen-Ges. Phys. Chem., 1971, 75: 458.
[168] Nath S, Pal S, Palit D K, Sapre A V, Mittal J P. J. Phys. Chem. A, 1998, 102: 5822.
[169] Hagberg J, Olsman H, Bavel B V, Engwall M, Lindstrm G. Environ. Int., 2006, 32: 851.
[170] Pan L, Bian W S, Zhang J X. J. Phys. Chem. A, 2013, 117: 5291.
[171] Chen N, Rioux R M, Barbosa L A M M, Ribeiro F H. Langmuir, 2010, 26(21): 16615.
[172] Bahnemann D W, Monig J, Chapman R. J. Phys. Chem., 1987, 91: 3782.
[173] Calza P, Minero C, Pelizzetti E. Environ. Sci. Technol., 1997, 31: 2198.
[174] Stark J, Rabani J. J. Phys. Chem. B, 1999, 103: 8524.
[175] Chemseddine A, Boehm H P. J. Mol. Catal., 1990, 60: 295.
[176] Ollis D F. Environ. Sci. Technol., 1985, 19(6): 480.
[177] Sabin F, Türk T, Vogler A. J. Photochem. Photobiol. A: Chem., 1992, 63: 99.
[178] Glaze W H, Kenneke J F, Ferry J L. Environ. Sci. Technol., 1993, 27: 177.
[179] Fan J F, Yates J T. J. Am. Chem. Soc., 1996, 118: 4686.
[180] Keum Y S, Li Q X. Environ. Sci. Technol., 2005, 39: 2280.
[181] Scherer M M, Balko B A, Gallagher D A, Tratnyek P G. Environ. Sci. Technol., 1998, 32: 3026.
[182] Fu Q S, Barkovskii A L, Adriaens P. Environ. Sci. Technol., 1999, 33: 3837.
[183] Zeng X, Freeman P K, Vasil'ev Y V, Voinov V G, Simonich S L, Barofsky D F. J. Chem. Eng. Data, 2005, 50: 1548.
[184] Yak H K, Lang Q Y, Wai C M. Environ. Sci. Technol., 2000, 34: 2792.
[185] Xu J, Bhattacharyya D. J. Phys. Chem. C, 2008, 112: 9133.
[186] Woods L S, Trobaugh D J. Environ. Sci. Technol., 1999, 33: 857.
[187] Chowdhury P, Moreira J, Gomaa H, Ray A K. Ind. Eng. Chem. Res., 2012, 51: 4523.
[188] Higgins C P, Luthy R G. Environ. Sci. Technol., 2006, 40: 7251.
[189] Taghipour F, Evans G J. Environ. Sci. Technol., 1996, 30: 1558.
[190] Wong C C, Chu W. Environ. Sci. Technol., 2003, 37: 2310.
[191] Keen O S, Linden K G. Environ. Sci. Technol., 2013, 47: 6799.
[192] Ohtani B. Adv. Inorg. Chem., 2011, 63: 395.
[193] Alhakimi G, Studnicki L H, Al-Ghazali M. J. Photochem. Photobiol. A: Chem., 2003, 154: 219.
[194] Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C: Photochem. Rev., 2000, 1: 1.
[195] Dibble L A, Raupp G B. Environ. Sci. Technol., 1992, 26: 492.
[196] Peral J, Ollis D. J. Catal., 1992, 136: 554.
[197] Horikoshi S, Tokunaga A, Watanabe N, Hidaka H, Serpone N. J. Photochem. Photobiol. A: Chem., 2006, 177: 129.
[198] Miller G C, Zepp R G. Environ. Sci. Technol., 1979, 13: 860.
[199] Zafiriou O C, Joussot-Dubien J, Zepp R G, Zika R G. Environ. Sci. Technol., 1984, 18: 358A.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[10] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[11] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[12] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[13] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[14] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[15] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
阅读次数
全文


摘要

卤代有机污染物的光化学降解