English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 898-908 DOI: 10.7536/PC130952 前一篇   

• 综述与评论 •

活化过硫酸盐原位化学氧化修复有机污染土壤和地下水

龙安华1,2, 雷洋1, 张晖*1   

  1. 1. 武汉大学环境工程系 湖北省生物质资源化学与环境生物技术重点实验室(武汉大学) 武汉 430079;
    2. 江西科技师范大学 南昌 330013
  • 收稿日期:2013-09-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 张晖,e-mail:eeng@whu.edu.cn E-mail:eeng@whu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20107005);江西省教育厅科技项目(No. GJJ13557);生物质资源化学与环境生物技术湖北省重点实验室(武汉大学)开放基金项目(No. HBRCEBL2012-2013004)和江西科技师范大学博士科研启动基金项目(No. 3000990115)资助

In Situ Chemical Oxidation of Organic Contaminated Soil and Groundwater Using Activated Persulfate Process

Long Anhua1,2, Lei Yang1, Zhang Hui*1   

  1. 1. Department of Environmental Engineering, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China;
    2. Jiangxi Science and Technology Normal University, Nanchang 330013, China
  • Received:2013-09-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 20107005), Research Fund of Jiangxi Provincial Education Department (No. GJJ13557), the Opening Foundation of Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory(Wuhan University)(No. HBRCEBL2012-2013004) and Ph.D. Research Startup Foundation of Jiangxi Science and Technology Normal University (No. 3000990115)

原位化学氧化 (ISCO)是近些年来国内外较为推崇的一种土壤和地下水修复技术。过硫酸盐(PS,S2O82-)具有易运输、较稳定、易溶于水和易传质等性质,能很好地适应ISCO的发展要求。它在光、热、过渡金属离子、强氧化剂和强碱性环境等活化条件下,能产生强氧化性的硫酸根自由基SO4·-,适用于氧化降解各种有机污染物。本文在分析活化过硫酸盐(activated persulfate,APS)氧化机理的基础上,综述了不同方式活化过硫酸盐原位修复有机污染土壤和地下水及APS协同、联用技术的应用,并就值得深入研究的问题和热点趋势进行了展望。

In-situ chemical oxidation (ISCO) is an effective technology for the remediation of organic contaminated soils and groundwater, as it has high contaminants removal rates and offers the possibility of fast treatment. As an in-situ remediation technology, ISCO can be also used for minimizing contaminants dispersion and lowering the overall treatment cost. Persulfate (PS) is an emerging and promising oxidant for in-situ soil and groundwater remediations due to its high redox potential (E0=2.01 V), long-term stability, high-water solubility, easy transport and wide operative pH range. It can be thermally or chemically activated by initiators to form sulfate radical (SO4·-), a strong oxidant (E0 =2.60 V) which has been successfully used for environmental applications in the remediation of aqueous and sediment systems. The activation methods include UV, heat, transition metals ions, alkaline condition and PS combined with other oxidants. Therefore, the application of activated persulfate (APS) oxidation has emerged as a novel ISCO. This paper provides an overview of mechanism and research progress of APS oxidation. It also reviews the engineering application of APS oxidation technology such as synergistic and hyphenated action for remediation of organic contaminated soils and groundwater, and points out the prospects of the research areas meriting further investigation and development trends.

Contents
1 Introduction
2 Mechanism and research progress of activation oxidation
2.1 Methods of activation and reaction mechanism
2.2 Heat activation
2.3 Transition metals activation
2.4 Alkaline activation
2.5 Combination of other oxidants
2.6 Research areas meriting further investigation and development trends
3 Engineering application of APS
3.1 Synergistic activation of PS
3.2 Integration of APS with other processes
4 Conclusion and perspective

中图分类号: 

()

[1] 纪录(Ji L), 张晖(Zhang H). 环境污染治理技术与设备(Techniques and Equipments for Environmental Pollution Control), 2003, 4(6): 37.
[2] 崔英杰(Cui Y J), 杨世迎(Yang S Y), 王萍(Wang P), 贾永刚(Jia Y G). 化学进展(Progress in Chemistry), 2008, 20(7/8): 1196.
[3] 龙安华(Long A H), 倪才英(Ni C Y), 曹永琳(Cao Y L), 黄贵凤(Huang G F), 王璞阳(Wang P Y). 土壤(Soils), 2007, 39(4): 545.
[4] 杨世迎(Yang S Y), 陈友媛(Chen Y Y), 胥慧真(Xu H Z), 王萍(Wang P), 刘玉红(Liu Y H), 王茂东(Wang M D). 化学进展(Progress in Chemistry), 2008, 20(9): 1433.
[5] Zhang H, Ji L, Wu F. J. Hazard. Mater., 2005, 120(1/3): 143.
[6] Liang C J, Bruell C J, Marley M C, Sperry K L. Soil Sediment., 2003, 12(2): 207.
[7] Oh S Y, Kang S G, Chiu P C. Sci. Total Environ., 2010, 408(16): 3464.
[8] Watts R J, Teel A. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2006, 10(1): 2.
[9] Gates-Anderson D, Siegrist R, Cline S. J. Environ. Eng., 2001, 127(4): 337.
[10] MacKinnon L K, Thomson N R. J. Contam. Hydrol., 2002, 56(1/2): 49.
[11] Watts R J, Finn D D, Cutler L M. J. Contam. Hydrol., 2007, 91(3/4): 312.
[12] Zhang H, Fei C Z, Zhang D B. J. Hazard. Mater., 2007, 145(1/2): 227.
[13] Tsitonaki A, Petri B, Crimi M. Crit. Rev. Environ. Sci. Tech., 2010, 40(1): 55.
[14] Yukselen-Aksoy Y, Khodadoust A P, Reddy K R. Water Air Soil Poll., 2010, 209(1/4): 419.
[15] Cao J S, Zhang W X, Brown D G. Environ. Eng. Sci., 2008, 25(2): 221.
[16] Liang C J, Wang Z S, Bruell C J. Chemosphere, 2007, 66(1): 106.
[17] Yang S Y, Wang P, Yang X, Shan L, Zhang W Y, Shao X T, Niu R. J. Hazard. Mater., 2010, 179(1/3): 552.
[18] Le C, Wu J H, Li P. Water Sci. Technol., 2011, 64(3): 754.
[19] Kennedy R J, Stock A M T. J. Org. Chem., 1960, 25(11): 1901.
[20] Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2003, 37(20): 4790.
[21] Olmez-Hanci T, Imren C, Kabdasli I. Photoch. Photobio. Sci., 2011, 10(3): 408.
[22] Liang C J, Chien Y C, Lin Y L. Soil and Sediment Contamination: An International Journal, 2012, 21(6): 701.
[23] Antoniou M G, de la Cruz A A, Dionysiou D D. Appl. Catal. B-Environ., 2010, 96(3/4): 290.
[24] Scott G. Huling B E P. U.S. Environmental Protection Agency, EPA/600/R-06/072, 2006.
[25] Georgi A, Kopinke F D. Appl. Catal. B-Environ., 2005, 58(1/2): 9.
[26] 杨世迎(Yang S Y), 杨鑫(Yang X), 王萍(Wang P), 单良(Shan L), 张文义(Zhang W Y). 现代化工(Modern Chemical Industry), 2009, 29(4): 13.
[27] Yang Q J, Choi H, Chen Y J. Appl. Catal. B-Environ., 2008, 77(3/4): 300.
[28] Rastogi A, Ai-Abed S R, Dionysiou D D. Appl. Catal. B-Environ., 2009, 85(3/4): 171.
[29] Bandala E R, Pelaez M A, Dionysiou D D. J. Photoch. Photobio. A, 2007, 186(2/3): 357.
[30] Anipsitakis G P, Dionysiou D D. Appl. Catal. B-Environ., 2004, 54(3): 155.
[31] Neppolian B, Celik E, Choi H. Environ. Sci. Technol., 2008, 42(16): 6179.
[32] Lau T K, Chu W, Graham N J D. Environ. Sci. Technol., 2007, 41(2): 613.
[33] Johnson R L, Tratnyek P G, Johnson R O. Environ. Sci. Technol., 2008, 42(24): 9350.
[34] 韩强(Han Q), 杨世迎(Yang S Y), 杨鑫(Yang X), 邵雪停(Shao X T), 牛瑞(Niu R), 王雷雷(Wang L L). 化学进展(Progress in Chemistry), 2012, 24: 144.
[35] Gayathri P, Dorathi R P J, Palanivelu K. Ultrason. Sonochem., 2010, 17(3): 566.
[36] Neppolian B, Jung H, Choi H. Water Res., 2002, 36(19): 4699.
[37] Hou L W, Zhang H, Xue X F. Sep. Purif. Technol., 2012, 84: 147.
[38] Criquet J, Leitner N K V. Chem. Eng. J., 2011, 169(1/3): 258.
[39] Roshani B, Leitner N K V. J. Hazard. Mater., 2011, 190(1/3): 403.
[40] Yang S Y, Wang P, Yang X. J. Environ. Sci.-China, 2009, 21(9): 1175.
[41] Lee Y C, Lo S L, Chiueh P T. Water Res., 2009, 43(11): 2811.
[42] Yang S Y, Yang X, Shao X T. J. Hazard. Mater., 2011, 186(1): 659.
[43] 杨鑫(Yang X), 杨世迎(Yang S Y), 邵雪停(Shao X T), 王雷雷(Wang L L), 牛瑞(Niu R). 化学进展(Progress in Chemistry), 2010, 22(10): 2071.
[44] Liang C J, Guo Y Y, Chien Y C. Ind. Eng. Chem. Res., 2010, 49(18): 8858.
[45] Vicente F, Santos A, Romero A. Chem. Eng. J., 2011, 170(1): 127.
[46] Romero A, Santos A, Vicente F. Chem. Eng. J., 2010, 162(1): 257.
[47] Criquet J, Leitner N K V. Chemosphere, 2009, 77(2): 194.
[48] Rastogi A, Al-Abed S R, Dionysiou D D. Water Res., 2009, 43(3): 684.
[49] Mora V C, Rossoa J A, Le Roux G C. Chemosphere, 2009, 75(10): 1405.
[50] Huang K C, Couttenye R A, Hoag G E. Chemosphere, 2002, 49(4): 413.
[51] Waldemer R H, Tratnyek P G, Johnson R L. Environ. Sci. Technol., 2007, 41(3): 1010.
[52] 顾小钢(Gu X G), 吕树光(Lu S G), 邱兆富(Qiu Z F), 隋倩(Sui Q), 林匡飞(Lin K F), 刘勇弟(Liu Y D). 环境科学学报(Journal of Environmental Sciences). 2012, 32(6): 1374.
[53] Gu X G, Lu S G, Li L. Ind. Eng. Chem. Res., 2011, 50(19): 11029.
[54] Andreottola G, Bonomo L, de Gioannis G. J. Soil Sediment., 2010, 10(1): 142.
[55] Cuypers C, Grotenhuis T, Joziasse J. Environ. Sci. Technol., 2000, 34(10): 2057.
[56] Block P A, Robinson D. Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, 2004
[57] Huang K C, Zhao Z Q, Hoag G E. Chemosphere, 2005, 61(4): 551.
[58] Bougie S, Dube J S. J. Environ. Eng. Sci., 2007, 6(4): 397.
[59] Fang S C, Lo S L. Res. J. Chem. Environ., 2011, 15(2): 280.
[60] Yen C H, Chen K F, Kao C M. J. Hazard. Mater., 2011, 186(2/3): 2097.
[61] Do S H, Kwon Y J, Kong S H. J. Hazard. Mater., 2010, 182(1/3): 933.
[62] Ahmad M, Teel A L, Watts R J. J. Contam. Hydrol., 2010, 115(1/4): 34.
[63] Liang C J, Lee I L. J. Contam. Hydrol., 2008, 100(3/4): 91.
[64] Crimi M L, Taylor J. Soil Sediment Contam., 2007, 16(1): 29.
[65] Killian P F, Bruell C J, Liang C J. Soil Sediment Contam., 2007, 16(6): 523.
[66] Liang C J, Huang C F, Mohanty N. Ind. Eng. Chem. Res., 2007, 46(20): 6466.
[67] Dahmani M, Huang K, Hoag G. Water, Air, & Soil Pollution: Focus, 2006, 6(1): 127.
[68] Liang C J, Bruell C J, Marley M C. Chemosphere, 2004, 55(9): 1213.
[69] Liang C J, Bruell C J, Marley M C. Chemosphere, 2004, 55(9): 1225.
[70] Yan N, Liu F, Huang W. Chem. Eng. J., 2013, 219: 149.
[71] Anipsitakis G P, Dionysiou D D. Environ. Sci. Technol., 2004, 38(13): 3705.
[72] Lin H, Wu J, Zhang H. Sep. Purif. Technol., 2013, 117(30): 18.
[73] Wu J, Zhang H, Qiu J J. J. Hazard. Mater., 2012, 215/216: 138.
[74] Long A H, Lei Y, Zhang H. Ind. Eng. Chem. Res., 2013, 53(3):1033. DOI: 10.1021/ie402633n
[75] Xu X R, Li X Z. Sep. Purif. Technol., 2010, 72(1): 105.
[76] Zhang N D, Kong X P, Zhang M X. J. Adv. Oxid. Technol., 2007, 10(1): 193.
[77] Teel A L, Cutler L M, Watts R J. J. Environ. Sci. Heal. A, 2009, 44(11): 1098.
[78] Liang C J, Chen Y J, Chang K J. J. Hazard. Mater., 2009, 164(2/3): 571.
[79] Liang C J, Huang C F, Chen Y J. Water Res., 2008, 42(15): 4091.
[80] Lin H, Wu J, Zhang H. Sep. Purif. Technol., 2013, 117(30): 18.
[81] Liang C J, Lai M C. Environ. Eng. Sci., 2008, 25(7): 1071.
[82] 赵进英(Zhao J Y). 大连理工大学博士论文(Doctoral Dissertation of Dalian University of Technology), 2010.
[83] Wang X, Wang L G, Li J, Qiu J J, Cai C, Zhang H. Sep. Purif. Technol., 2014, 122(0): 41.
[84] Ahmad M, Teel A L, Watts R J. J. Contam. Hydrol., 2010, 115(1/4): 34.
[85] Cao J, Zhang W X, Brown D G. Environ. Eng. Sci., 2008, 25(2): 221.
[86] Liang C J, Lee I L, Hsu I Y. Chemosphere, 2008, 70(3): 426.
[87] Furman O S, Teel A L, Ahmad M. J. Environ. Eng.-ASCE, 2011, 137(4): 241.
[88] Goi A, Trapido M. J. Adv. Oxid. Technol., 2010, 13(1): 50.
[89] Hoag G E, Chheda P V, Woody B A, Dobbs G M. United Technologies Corporation, 73049
[6019548] , 2000
[90] Ferrarese E, Andreottola G, Oprea I A. J. Hazard. Mater., 2008, 152(1): 128.
[91] Hori H, Yamamoto A, Koike K. Water Res., 2007, 41(13): 2962.
[92] Méndez-Díaz J, Sánchez-Polo M, Rivera-Utrilla J. Chem. Eng. J., 2010, 163(3): 300.
[93] Fang G D, Gao J, Dionysiou D D. Environ. Sci. Technol., 2013, 47(9): 4605.
[94] FMC.[2013-08-25] .http://environmental.fmc.com/Klozur/ResourceCenter.aspx
[95] Yang G C C, Long Y W. J. Hazard. Mater., 1999, 69(3): 259.
[96] Yukselen-Aksoy Y, Reddy K. J. Geotech. Geoenviron., 2013, 139(1): 175.
[97] Yukselen-Aksoy Y, Reddy K R. Electrochimica Acta, 2012, 86: 164.
[98] Isosaari P, Piskonen R, Ojala P. J. Hazard. Mater., 2007, 144(1/2): 538.
[99] Yang G C C, Yeh C F. Sep. Purif. Technol., 2011, 79(2): 264.
[100] Yang G C C, Liu C Y. J. Hazard. Mater., 2001, 85(3): 317.
[101] Acar Y B, Alshawabkeh A N. Environ. Sci. Technol., 1993, 27(13): 2638.
[102] Kambhu A, Comfort S, Chokejaroenrat C. Chemosphere, 2012, 89(6): 656.
[103] Ahmad F, Schnitker S P, Newell C J. J. Contam. Hydrol., 2007, 90(1/2): 1.
[104] Liu S J, Jiang B, Huang G Q. Water Res., 2006, 40(18): 3401.
[105] Vesela L, Nemecek J, Siglova M. Int. Biodeter. Biodegr., 2006, 58(3/4): 224.
[106] Barton C S, Stewart D I, Morris K. J. Hazard. Mater., 2004, 116(3): 191.
[107] Kao C M, Chen S C, Wang J Y. Water Res., 2003, 37(1): 27.
[108] Liang S H, Kao C M, Kuo Y C. J. Hazard. Mater., 2011, 185(2/3): 1162.
[109] Liang S H, Kao C M, Kuo Y C. Water Res., 2011, 45(8): 2496.
[110] West C C, Harwell J H. Environ. Sci. Technol., 1992, 26(12): 2324.
[111] Ying G G. Environ. Int., 2006, 32(3): 417.
[112] Long A H, Zhang H, Lei Y. Sep. Purif. Technol., 2013, 118: 612.
[113] 龙安华(Long A H). 武汉大学博士论文(Doctoral Dissertation of Wuhan University), 2013

[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[3] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[4] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[5] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[6] 衣晓虹, 王崇臣. 铁基金属-有机骨架及其复合物高级氧化降解水中新兴有机污染物[J]. 化学进展, 2021, 33(3): 471-489.
[7] 钟来进, 唐直婕, 胡忻, 练鸿振. 大气颗粒物中有害成分的吸入生物可给性研究[J]. 化学进展, 2021, 33(10): 1766-1779.
[8] 谷麟, 章凯, 俞海祥, 董光霞, 乔兴博, 闻海峰. 污泥碳基催化材料的合成及在水环境中的应用[J]. 化学进展, 2020, 32(9): 1412-1426.
[9] 王均凤, 王毅霖, 张晓飞, 王道广, 李亚辉, 何宏艳, 李兴春, 张锁江. 炼化反渗透浓水中有机物处理技术[J]. 化学进展, 2020, 32(10): 1462-1481.
[10] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[11] 鲍恋君, 郭英, 刘良英, 曾永平*. 珠江三角洲典型有机污染物的环境行为及人群暴露风险[J]. 化学进展, 2017, 29(9): 943-961.
[12] 殷立, 徐剑桥*, 黄周兵, 陈国胜, 郑娟, 欧阳钢锋*. 基于新型材料的固相微萃取探针的制备与应用[J]. 化学进展, 2017, 29(9): 1127-1141.
[13] 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 27(8): 1123-1132.
[14] 刘国瑞, 李丽, 孙素芳, 姜晓旭, 王美, 郑明辉. 多溴联苯的污染来源、分析方法和环境污染特征[J]. 化学进展, 2014, 26(08): 1434-1444.
[15] 张峰振, 吴超飞, 胡芸, 韦朝海. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(06): 1079-1098.