English
新闻公告
More
化学进展 2020, Vol. 32 Issue (10): 1452-1461 DOI: 10.7536/PC200335 前一篇   后一篇

• 综述 •

近红外光响应液晶弹性体

王猛1,**(), 马丹阳1, 王成杰2   

  1. 1.东南大学化学化工学院 南京 211189
    2.中国航空油料有限责任公司 北京 100088
  • 收稿日期:2020-04-01 修回日期:2020-05-06 出版日期:2020-10-24 发布日期:2020-09-02
  • 通讯作者: 王猛
  • 基金资助:
    国家自然科学基金项目(51903048); 江苏省自然科学基金项目(BK20180406); 中央高校基本科研业务费资助(2242020K40034)

Near-Infrared Light Responsive Liquid Crystal Elastomers

Meng Wang1,**(), Danyang Ma1, Chengjie Wang2   

  1. 1. College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
    2. China National Aviation Fuel Supply Co.,Ltd., Beijing 100088, China
  • Received:2020-04-01 Revised:2020-05-06 Online:2020-10-24 Published:2020-09-02
  • Contact: Meng Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51903048); Jiangsu Provincial Natural Science Foundation(BK20180406); Fundamental Research Funds for the Central Universities(2242020K40034)

刺激-响应液晶弹性体是一类新兴的智能聚合物材料,其在外界刺激(热、光、电、磁场等)下会产生大尺寸的可逆形变,因此具有广阔的应用前景。由于单轴取向的液晶基元的微观顺序或分子结构的变化,整个液晶弹性体材料在液晶相向各向同性相转变过程中可以发生非常大的可逆宏观形变。其中,由于近红外光的强穿透力和对生物组织的低毒性,近红外光响应液晶弹性体受到了科学家们的广泛关注。近红外光响应液晶弹性的变形机制主要分为两大类。一种是通过掺杂无机或有机上转换材料将近红外光转化为低波长的光,激发偶氮苯发生顺反异构化。另一种近红外光响应液晶弹性体利用导热填料的光热效应将光转化为热,从而进一步诱导液晶相向各向同性相转变,从而使液晶弹性体材料发生形变。这些优点使近红外光响应液晶弹性体具有潜在的应用价值,如驱动器、人造器官、智能表面和微型机器人等。本文综述了近红外激光响应材料的研究进展,详细介绍了近红外光响应材料的主要变形机理及其应用,并对近红外光响应液晶弹性体和软驱动器的发展前景进行了展望。

As one booming category of smart polymeric materials, stimuli-responsive liquid crystal elastomers (LCEs) are very promising owing to the large and reversible shape deformations response to external stimuli (heat, light, electric or magnetic field, etc.). Due to the changes of microscopic orders or molecular structures of uniaxial-aligned mesogens, the whole LCE materials could execute very large and reversible macroscopic actuation during the LC-to-isotropic phase transition process. Among them, near-infrared light (NIR-light) responsive LCEs have attracted scientific attention because NIR-light has a strong penetration and low toxicity to biological tissues. The NIR-induced deformation mechanisms of LCEs can be divided into two main categories. One is relying on the trans-cis variations of azobenzene chromophores triggered by NIR-light which can be converted into low-wavelength lights by doping inorganic or organic up-conversion materials. The other type of light-responsive LCEs takes advantage of the photo-thermal effect of thermal conductive fillers to transform light into heat which further induces the LC-to-isotropic phase transition and thus make the LCE materials shrink/expand. These characteristics endow NIR-light responsive LCE materials with potential applications as mechanical actuators, artificial organs, smart surfaces, microrobots, etc. This article reviewes the developments of NIR-light responsive LCEs, and also introduces the main deformation mechanisms and applications of NIR-light responsive LCEs in detail. Besides, the article further provides a view of prospective development in future for NIR-light responsive LCEs and actuators.

Contents

1 Introduction

2 Near-infrared light responsive liquid crystal elastomers based on up-conversion effect

3 Near-infrared light responsive liquid crystal elastomers based on photothermal effect

3. 1 Carbon photothermal materials

3. 2 Noble metal photothermal materials

3.3 Organic photothermal materials

3. 4 Semiconductor photothermal materials

4 Applications

4.1 Soft robots

4.2 Bionic devices

5 Conclusion and outlook

()
图1 液晶弹性体的液晶相-各向同性相的相变过程
Fig.1 LC-to-isotropic phase transition of LCEs
图2 石墨烯/液晶弹性体纳米复合材料在近红外光开关切换时可逆形变的示意图[21]
Fig.2 Schematic diagram of reversible mechanical actuation of graphene/LCE nanocomposites when NIR optical switches are switched[21]
图3 掺杂碳纳米管的液晶弹性体复合膜在近红外光照射下发生收缩形变[27]
Fig.3 The NIR-induced shrinking behavior of SWCNT-incorporated LCE films[27]
图4 激光辐射下液晶弹性体凝胶发生形状变化[30]
Fig.4 The snapshots of laser irradiation induced shape change for a LCE/AuNR pillar[30]
图5 有机光热小分子/液晶弹性体复合膜在近红外光照射下的收缩形变[34]
Fig.5 The shrinking deformation of LCE/YHD796 composite film under NIR irradiation[34]
图6 由不对称的双层薄膜组成的蠕虫助步器装置以及爬行过程[64]
Fig.6 Inch worm walker device consisting of asymmetric double-layer film and crawling process[64]
图7 光致多方向双层LCE行走机器人的行走过程[66]
Fig.7 Walking process of light multi-directional double-layer LCE walker[66]
图8 聚合物“起重机”执行一系列组合的光驱动机器人式运动任务示意图和照片[51]
Fig.8 Schematic illustration and photographs showing the polymer “crane” executing a series of combinational light-driven robot-like motion tasks[51]
图9 一种三色变化的“花”,其花朵由不同波长的光调制为盛开和不盛开[70]
Fig.9 A tri-colour-changing “flower” with its blossom blooming and unblooming modulated by light with different wavelengths[70]
图10 相同大小的双层LCE带的紫外和近红外光响应行为[71]
Fig.10 Ultraviolet and near-infrared photoresponsive behaviors of a same-sized-bilayer LCE ribbon[71]
[1]
Yakacki C M, Shandas R, Lanning C, Rech B, Eckstein A, Gall K. Biomaterials, 2007,28:2255. doi: 10.1016/j.biomaterials.2007.01.030e295b168-bbc4-405f-ac96-9e4d50fc68f8
[2]
White T J, Broer D J. Nat. Mater, 2015,14:1087.

URL     pmid: 26490216
[3]
徐婉娴(Xu W X), 尹若元(YiR Y), 林里(LinL), 俞燕蕾(YuY L). 化学进展 (Progress in Chemistry), 2008,20(1):140. db640977-3d3e-4f17-9113-fcfea68b2e8f
[4]
戴俊燕(Dai J Y), 刘伟昌(LiuW C), 连彦青(LianY Q), 刘德山(LiuD S). 功能高分子学报 (Journal of Functional Polymers), 2000,13(3):349.
[5]
de Gennes P G. Acad. Sci. Ser. B, 1975,281:2.
[6]
Küpfer J, Finkelmann H. Macromol. Rapid Commun, 1991,12:717.
[7]
Ware T H, McConney M E, Wie J J, Tondiglia V P, White T J. Science, 2015,347:982. doi: 10.1126/science.1261019

URL     pmid: 25722408
[8]
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Physl. Rev. Lett, 2001,87:015501.
[9]
Yu Y L, Nakano M, Ikeda T. Nature, 2003,425:145.

URL     pmid: 12968169
[10]
Broer D J, Bastiaansen C M W, Debije M G, Schenning A. Angew. Chem. Int. Ed., 2012,51:7102.
[11]
Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt A M. Macromol. Symp, 2010,291:186.
[12]
Harris K D, Bastiaansen C W M, Lub J, Broer D J. Nano. Lett., 2005,5:1857.

URL     pmid: 16159238
[13]
Wei J, Yu Y L. Soft Matter, 2012,8:8050.
[14]
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F. Nature, 2001,410:447.

URL     pmid: 11260707
[15]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019,7:622.
[16]
Hu J, Li X, Ni Y, Ma S D, Yu H F. J. Mater. Chem. C, 2018,6:10815.
[17]
Ikeda T, Nakano M, Yu Y L, Kanazawa O, Tsutsumi A. Adv. Mater., 2003,15:201.
[18]
Li M H, Keller P, Lin B P, Wang X, Brunet M. Adv. Mater., 2003,15:569.
[19]
Cheng F T, Zhang Y Y, Yin R Y, Yu Y L. J. Mater. Chem., 2010,20:4888.
[20]
Wu W, Yao L M, Yang T S, Yin R Y, Li F Y, Yu Y L. J. Am. Chem. Soc., 2011,133:15810.

URL     pmid: 21913658
[21]
Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D, Jiang T, Lin Z Q. Adv. Mater, 2015,27:6376.

URL     pmid: 26389820
[22]
Iijima S, Ichihashi T. Nature, 1993,363:603.
[23]
Yang L Q, Setyowati K, Li A, Gong S Q, Chen J. Adv. Mater., 2008,20:2271.
[24]
Ji Y, Huang Y Y, Rungsawang R, Terentjev E M. Adv. Mater, 2010,22:3436. doi: 10.1002/adma.200904103

URL     pmid: 20391542
[25]
Marshall J E, Ji Y, Torras N, Zinoviev K, Terentjev E M. Soft Matter, 2012,8:1570.
[26]
Li C S, Liu Y, Lo C W, Jiang H R. Soft Matter, 2011,7:7511.
[27]
Wang M, Sayed M S, Guo L X, Lin B P, Yang H. Macromolecules, 2016,49:663.
[28]
Sun Y, Evans J S, Lee T, Senyuk B, Keller P, He S, Smalyukh I I. Appl. Phys. Lett, 2012,100:241901.
[29]
Liu X Y, Wei R B, Hoang P T, Wang X G, Liu T, Keller P. Adv. Funct. Mater, 2015,25:3022.
[30]
Liu X Y, Wang X G, Liu T, Keller P. Macromolecules, 2016,49:8322.
[31]
Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X Q. Chem. Commun, 2015,51:12126.
[32]
de Haan L T, Gimenez-Pinto V, Konya A, Nguyen T S, Verjans J M N, Sánchez-Somolinos C, Selinger J V, Selinger R L B, Broer D J, Schenning A P H J. Adv. Funct. Mater., 2014,24:1251.
[33]
de Haan L T, Carlos S S, Bastiaansen C M W, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2012,124:12637.
[34]
Guo L X, Liu M H, Sayed M S, Lin B P, Keller P, Zhang X Q, Sun Y, Yang H. Chem. Sci., 2016,7:4400. doi: 10.1039/c6sc00758a

URL     pmid: 30155087
[35]
Liu L, Liu M H, Deng L L, Lin B P, Yang H. J. Am. Chem. Soc., 2017,139:11333.

URL     pmid: 28786668
[36]
Liu W, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016,49:4023.
[37]
葛斯佳(Ge S J), 单周楠(ShanZ N), 邓琳琳(DengL L), 林保平(LinB P), 杨洪(Yang H). 高分子学报 (Acta Polymerica Sinica), 2017,10:1633.
[38]
Jiang Z C, Xiao Y Y, Zhao Y. Adv. Opt. Mater, 2019,7:1900262.
[39]
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv. Mater, 2019,31:1904224.
[40]
Zeng H, Lahikainen M, Liu L, Ahmed Z, Wani O M, Wang M, Yang H, Priimagi A. Nat. Commun., 2019,10:5057. doi: 10.1038/s41467-019-13077-6

URL     pmid: 31700006
[41]
Kragt A J, Hoekstra D C, Stallinga S, Broer D J, Schenning A P H J. Adv. Mater., 2019,31:1903120.
[42]
Ge F, Zhao Y. Adv. Funct. Mater, 2020,30:1901890.
[43]
Lu H F, Wang M, Chen X M, Lin B P, Yang H. J. Am. Chem. Soc., 2019,141:14364.

URL     pmid: 31429282
[44]
Zeng H, Wani O M, Wasylczyk P, Priimagi A. Macromol. Rapid Commun, 2017,39:1700224.
[45]
Qian X J, Chen Q M, Yang Y, Xu Y S, Li Z, Wang Z H, Wu Y H, Wei Y, Ji Y. Adv. Mater., 2018,30:1801103.
[46]
Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez . Nat. Mater., 2016,15:647.
[47]
Si Q Y, Feng Y Y, Yang W X, Fu L X, Yan Q H, Dong L Q, Long P, Feng W. ACS Appl. Mater. Interfaces, 2018,10:29909.

URL     pmid: 30047262
[48]
Lahikainen M, Zeng H, Priimagi A. Nat. Commun., 2018,9:4148.

URL     pmid: 30297774
[49]
Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L, Liu J. Sci. Rep., 2015,5:1.
[50]
Zeng H, Wasylczyk P, Wiersma D S, Priimagi A. Adv. Mater., 2018,30:1703554.
[51]
Lu X L, Zhang H, Fei G X, Yu B, Tong X, Xia H S, Zhao Y. Adv. Mater., 2018,30:1706597.
[52]
Ma S D, Li X, Huang S, Hu J, Yu H F. Angew. Chem. Int. Ed., 2019,58:2655.
[53]
Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv. Mater., 2017,29:1701814.
[54]
Oosten C L V, Bastiaansen C W M, Broer D J. Nat. Mater., 2009,8:677.
[55]
Wani O M, Zeng H, Priimagi A. Nat. Commun., 2017,8:1.

URL     pmid: 28232747
[56]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016,537:179. doi: 10.1038/nature19344

URL     pmid: 27604946
[57]
Vantomme G, Gelebart A H, Broer D J, Meijer E W. Tetrahedron, 2017,73:4963.
[58]
Xiong Y B, Zhang L D, Weis P, Naumov P, Wu S. J. Mater. Chem. A, 2018,6:3361.
[59]
Yamada M, Kondo M, Mamiya J I, Yu Y, Kinoshita M, Barrett C J, Ikeda T. Angew. Chem. Int. Ed., 2008,47:4986.
[60]
Wei W Y, Zhang Z W, Wei J, Li X F, Guo J B. Adv. Opt. Mater, 2018,6:1800131.
[61]
Zhang L D, Liang H R, Jacob J, Naumov P. Nat. Commun., 2015,6:7429.

URL     pmid: 26067649
[62]
Kirillova A, Maxson R, Stoychev G, Gomillion C T, Ionov L. Adv. Mater., 2017,29:703443.
[63]
Nocentini S, Parmeggiani C, Martella D, Wiersma D S. Adv. Opt. Mater, 2018,6:1800207.
[64]
Kohlmeyer R R, Chen J. Angew. Chem. Int. Ed., 2013,125:9404.
[65]
Hu J, Kuang Z Y, Tao L, Huang Y F, Wang Q, Xie H L, Chen E Q. ACS Appl. Mater. Interfaces, 2019,10:29909. doi: 10.1021/acsami.8b08025

URL     pmid: 30047262
[66]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019,10:4539. doi: 10.1038/s41467-019-12583-x

URL     pmid: 31586123
[67]
Ge F, Yang R, Tong X, Camerel F, Zhao Y. . Angew. Chem. Int. Ed., 2018,130:11932.
[68]
Zhang Y B, Wang Z H, Yang Y, Chen Q M, Qian X J, Wu Y H, Liang H, Xu Y S, Wei Y, Ji Y. Sci. Adv., 6:eaay8606.

URL     pmid: 32158947
[69]
Li C S, Liu Y, Huang X Z, Jiang H R. Adv. Funct. Mater, 2012,22:5166.
[70]
Zuo B, Wang M, Lin B P, Yang H. Chem. Mater., 2018,30:8079.
[71]
Wang M, Lin B P, Yang H. Nat. Commun., 2016,7:13981. doi: 10.1038/ncomms13981
[72]
Wang M, Han Y, Guo L X, Lin B P, Yang H. Liq. Cryst., 2019,46:1231.
[73]
Wang Z J, Li K, He Q G, Cai S Q. Adv. Mater, 2019,31:1806849.
[1] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[2] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[3] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[4] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[5] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[6] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[7] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[8] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[9] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[10] 张进, 蔡文生, 邵学广. 近红外光谱模型转移新算法[J]. 化学进展, 2017, 29(8): 902-910.
[11] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[12] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[13] 樊梦丽, 赵越, 刘言, 蔡文生, 邵学广. 近红外光谱水光谱组学[J]. 化学进展, 2015, 27(2/3): 242-250.
[14] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[15] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
阅读次数
全文


摘要

近红外光响应液晶弹性体