English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 978-988 DOI: 10.7536/PC200201 前一篇   后一篇

• 综述 •

异相Fenton催化水污染控制

贾丽达1, 张庆瑞1,2,**()   

  1. 1. 燕山大学 河北省水体重金属深度修复与资源利用重点实验室 河北省应用化学重点实验室 秦皇岛 066004
    2. 亚稳材料制备科学与技术国家重点实验室 燕山大学 秦皇岛 066004
  • 收稿日期:2020-02-02 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 张庆瑞
  • 基金资助:
    国家自然科学基金项目(21876145); 国家自然科学基金项目(51578476)

Heterogeneous Fenton Catalytic Oxidation for Water Treatment

Lida Jia1, Qingrui Zhang1,2,**()   

  1. 1. Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
    2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • Received:2020-02-02 Online:2020-07-24 Published:2020-07-10
  • Contact: Qingrui Zhang
  • About author:
    * ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(21876145); National Natural Science Foundation of China(51578476)

高级氧化技术(AOPs)是当前水处理研究领域的热点问题。异相Fenton催化氧化是一种极具代表性的高级氧化技术,其反应过程中产生的羟基自由基(·OH)等活性氧物种可以无选择性地攻击有机污染物,将有机大分子逐步分解为小分子物质,从而达到高效去除废水中有毒有害污染物的目的。相比均相Fenton反应,它具有pH响应范围广、不产生铁泥、催化剂可循环利用等优点。然而,由于固相催化剂的本征特性和局限性,当前所研究的异相Fenton催化剂仍存在中性条件下活性低、过氧化氢(H2O2)利用率低、Fe(Ⅲ)/Fe(Ⅱ)转化速率不高等问题,难以实现异相Fenton催化在环境修复领域的大规模应用。本文综述了不同活性氧物种参与的异相Fenton反应机理,总结了多种异相Fenton催化剂及其在有机污染物控制方面的应用,为继续开展异相Fenton催化水污染控制研究提供参考。

Advanced oxidation technology(AOPs) is a hot issue in current water treatment research, such as the representative Heterogeneous Fenton catalytic oxidation. It can generate active oxygen species such as hydroxyl radicals(·OH) during the reaction, which attack organic pollutants unselectively and gradually decompose organic macromolecules into small molecules, achieving the efficient removing of toxic and harmful pollutants. Compared with homogeneous Fenton reactions, heterogeneous Fenton reactions have various advantages, such as wide pH response, recyclability of catalysts, and no generation of iron mud. However, considering their intrinsic characteristics and limits of solid-phase catalysts, there are still some problems inhibiting the large-scale application, such as low activity under neutral conditions, low utilization of hydrogen peroxide(H2O2), and low conversion rate of Fe(Ⅲ)/Fe(Ⅱ). This article summarizes the heterogeneous Fenton reaction mechanism involving different active oxygen species as well as various heterogeneous Fenton catalysts and their applications in control of organic pollutants and provides a reference for continuing research on heterogeneous Fenton catalysts.

Contents

1 Introduction

2 Classical Fenton and heterogeneous Fenton reaction

3 Mechanism of the heterogeneous Fenton reaction

3.1 Hydroxyl radical mechanism

3.2 Singlet oxygen mechanism

3.3 High-valent iron species mechanism

4 Development and utilization of heterogeneous Fenton co-catalyst

4.1 Accelerate interface electron migration

4.2 Increase active site

5 Heterogeneous Fenton catalytic oxidation for organic wastewater

5.1 Dye wastewater

5.2 Antibiotic wastewater

5.3 Phenolic wastewater

6 Conclusion and outlook

()
图1 目前提出的异相Fenton反应机理
Fig.1 Mechanisms proposed up to now for the heterogeneous Fenton reaction
图2 Fh-OA系统在可见光照射下的反应机理[13]
Fig.2 Proposed reaction mechanisms involved in the Fh-OA system under visible light irradiation[13]
图3 钼助Fenton催化反应机制示意图[16]
Fig.3 Schematic diagram of molybdenum-assisted Fenton catalytic reaction[16]
图4 Fenton 反应中涉及高价态铁物种的反应机理[7]
Fig.4 Mechanistic presentation of possible reactions involved in the thermal Fenton reaction(with Simplified Notations Used for the Various Iron Complexes)[7]
图5 CBZ在FePcF16-O-FePcF16/H2O2系统中的氧化降解机理[21]
Fig.5 Possible oxidative mechanism of CBZ in FePcF16-O-FePcF16/H2O2 system[21]
图6 α-FeOOH-HA/H2O2体系中·OH生成机理示意图[24]
Fig.6 Schematic illustration for the possible hydroxyl radical generation mechanism in the α-FeOOH-HA/H2O2 system[24]
图7 Sed/AA/H2O2系统中有机污染物的降解[30]
Fig.7 Organic pollutants degradation in Sed/AA/H2O2 system[30]
图8 Fe-N/Pentlandite/Al2O3/C催化剂Fenton反应机理示意图[34]
Fig.8 Scheme of the possible mechanism for Fe-N/pentlandite/Al2O3/C catalyst in the Fenton reaction[34]
图9 MoS2在高级氧化系统中的助催化机理示意图[35]
Fig.9 Schematic illustration of the co-catalytic mechanism of MoS2 in AOPs[35]. Copyright 2018, Elsevier
图10 SAFe-SBA 和 AGFe-SBA催化剂合成示意图[39]
Fig.10 Schematic of SAFe-SBA and AGFe-SBA catalyst synthesis[39]
图11 该过程的可能潜在机制:活化
Fig.11 The possible underlying mechanism of the process: activation
[1]
Fenton H J H . J. Chem. Soc., 1894,65:899. doi: 10.1039/CT8946500899 http://xlink.rsc.org/?DOI=CT8946500899
[2]
Cheng M , Lai C , Liu Y , Zeng G , Huang D , Zhang C , Qin L , Hu L , Zhou C , Xiong W . Coord. Chem. Rev., 2018,368:80.
[3]
Tang S , Wang Z , Yuan D , Zhang Y , Qi J , Rao Y , Lu G , Li B , Wang K , Yin K . Inter. J. Electrochem. Sci., 2020,15:2470.
[4]
吕来(Lv L), 胡春(Hu C) . 化学进展 (Progress in Chemistry), 2017, (9):981. http://manu56.magtech.com.cn/progchem/CN/10.7536/PC170552
[5]
Haber F , Weiss J . Naturwissenschaften, 1932,20:948.
[6]
Zhang M , Dong H , Zhao L , Wang D , Meng D . Sci. Total. Environ., 2019,670:110. doi: 10.1016/j.scitotenv.2019.03.180 https://www.ncbi.nlm.nih.gov/pubmed/30903886

URL     pmid: 30903886
[7]
Stefan H , Bossmann E , Oliveros S , Göb S , Siegwart E . J. Phys. Chem. A, 1998,102:5542. doi: 10.1021/jp980129j https://pubs.acs.org/doi/10.1021/jp980129j
[8]
Lei L , He F . J. Chem. Eng. Jpn., 2003,54(11):1592.
[9]
Yang D , Xiang T U , Dai Y , Shi G , Song Y . Acta Scien. Circum., 2016,36:2460.
[10]
Sun H , Xie G , He D , Zhang L . Appl. Catal. B: Environ., 2019, DOI: 10.1016/j.apcatb.2009.118383.
[11]
Zhang Q , Zhang S , Zhao Z , Liu M , Yin X , Zhou Y , Wu Y , Peng Q . J. Clean. Prod., 2020,255:120297.
[12]
Kwan W P , Voelker B M V . Environ. Sci. Technol., 2002,36:1467. doi: 10.1021/es011109p https://www.ncbi.nlm.nih.gov/pubmed/11999052

URL     pmid: 11999052
[13]
Xu T , Zhu R , Shang H , Xia Y , Liu X , Zhang L . Water. Res., 2019,159:10. doi: 10.1016/j.watres.2019.04.055 https://www.ncbi.nlm.nih.gov/pubmed/31075500

URL     pmid: 31075500
[14]
Yang Z , Qian J , Yu A , Pan B . Proc. Natl. Acad. Sci., 2019,116(14):6659. doi: 10.1073/pnas.1819382116 https://www.ncbi.nlm.nih.gov/pubmed/30872470

URL     pmid: 30872470
[15]
Li X , Liu J , Rykov A I , Han H , Jin C , Liu X , Wang J . Appl. Catal. B: Environ., 2015,179:196.
[16]
Yi Q , Ji J , Shen B , Dong C , Liu J , Zhang J , Xing M . Environ. Sci. Technol., 2019,53(16):9725. doi: 10.1021/acs.est.9b01676 https://www.ncbi.nlm.nih.gov/pubmed/31331171

URL     pmid: 31331171
[17]
Ensing B , Buda F , Gribnau M C M , Baerends E J . J. Am. Chem. Soc., 2004,126:4355. https://www.ncbi.nlm.nih.gov/pubmed/15053625

URL     pmid: 15053625
[18]
Kremer M L . Phys. Chem. Chem. Phys., 1999,1(15):3595.
[19]
Li F , England J , Que L . J. Am. Chem. Soc., 2010,132(7):2134. doi: 10.1021/ja9101908 https://www.ncbi.nlm.nih.gov/pubmed/20121136

URL     pmid: 20121136
[20]
Buda F , Ensing B , Gribnau M C M , Baerends E J . Chem, 2001,7(13):2775.
[21]
Zhou J , Wu F , Zhu Z , Xu T , Lu W . Chem. Eng. J., 2017,328:915. doi: 10.1016/j.cej.2017.07.065 https://linkinghub.elsevier.com/retrieve/pii/S1385894717312111
[22]
Viollier P W . Appl. Geochem., 2000,15(6):785.
[23]
Chen L , Ma J , Li X , Zhang J , Fang J , Guan Y , Xie P . Environ. Sci. Technol., 2011,45(9):3925. doi: 10.1021/es2002748 https://www.ncbi.nlm.nih.gov/pubmed/21469678

URL     pmid: 21469678
[24]
Hou X , Huang X , Jia F , Ai Z , Zhao J , Zhang L . Environ. Sci. Technol., 2017,51(9):5118. https://www.ncbi.nlm.nih.gov/pubmed/28358480

URL     pmid: 28358480
[25]
Hou X , Huang X , Ai Z , Zhao J , Zhang L . J. Hazard. Mater., 2016,310:170. doi: 10.1016/j.jhazmat.2016.01.020 https://www.ncbi.nlm.nih.gov/pubmed/26921510

URL     pmid: 26921510
[26]
Qin Y , Song F , Ai Z , Zhang P , Zhang L . Environ. Sci. Technol., 2015,49(13):7948. https://www.ncbi.nlm.nih.gov/pubmed/26066010

URL     pmid: 26066010
[27]
Deng Y . Langmuir, 1997,13(6):1835.
[28]
Larsen O , Postma D , Jakobsen R . Geochim. Cosmochim. Ac., 2006,70(19):4827.
[29]
Afonso M D S , Morando P J , Blesa M A , Banwart S , Stumm W . J. Colloid. Interf. Sci., 1990,138(1):74.
[30]
Hou X , Huang X , Li M , Zhang Y , Yuan S , Ai Z , Zhao J , Zhang L . Chem. Eng. J., 2018,348:255. doi: 10.1016/j.cej.2018.05.015 https://linkinghub.elsevier.com/retrieve/pii/S1385894718308040
[31]
Hammouda S B , Fourcade F , Assadi A , Soutrel I , Adhoum N , Amrane A , Monser L . Appl. Catal. B: Environ., 2016,182:47.
[32]
Zhuang Y , Shi B . J. Environ. Sci.(China), 2019,85:147.
[33]
Xu T , Zhu R , Zhu G , Zhu J , Liang X , Zhu Y , He H . Appl. Catal. B: Environ., 2017,212:50.
[34]
Ma J , Xu L , Shen C , Wen Y , Hu C , Liu W . Environ. Sci. Technol., 2018,52:3608. https://www.ncbi.nlm.nih.gov/pubmed/29431432

URL     pmid: 29431432
[35]
Xing M , Xu W , Dong C , Bai Y , Zeng J , Yi Z , Zhang J , Yin Y . Chem, 2018,4(6):1359.
[36]
Liu M , Jia L , Zhao Z , Han Y , Li Y , Peng Q , Zhang Q . Chem. Eng. J. 2020,390:124667.
[37]
An S , Zhang G , Wang T , Zhang W , Li K , Song C , Miller J T , Miao S , Wang J , Guo X . ACS Nano, 2018,12(9):9441. doi: 10.1021/acsnano.8b04693 https://www.ncbi.nlm.nih.gov/pubmed/30183258

URL     pmid: 30183258
[38]
Zhou P , Lv F , Li N , Zhang Y , Mu Z , Tang Y , Lai J , Chao Y , Luo M , Lin F , Zhou J , Su D , Guo S . Nano Energy., 2019,56:127.
[39]
Yin Y , Shi L , Li W , Li X , Wu H , Ao Z , Tian W , Liu S , Wang S , Sun H . Environ. Sci. Technol., 2019,53(19):11391. doi: 10.1021/acs.est.9b03342 https://www.ncbi.nlm.nih.gov/pubmed/31436973

URL     pmid: 31436973
[40]
Monteagudo J M , Durán A , Martín I S , Aguirre M . Appl. Catal. B: Environ., 2009,89(3/4):510.
[41]
Monteagudo J M , Durán A , Martín I S , Aguirre M . Appl. Catal. B: Environ., 2010,95(1/2):120. doi: 10.1016/j.apcatb.2009.12.018 https://linkinghub.elsevier.com/retrieve/pii/S092633730900486X
[42]
Soares P A , Batalha M , Souza S M a G U , Boaventura R A R , Vilar V J P . J. Environ. Manage., 2015,152:120. doi: 10.1016/j.jenvman.2015.01.032 https://www.ncbi.nlm.nih.gov/pubmed/25618444

URL     pmid: 25618444
[43]
Hu L , Wang P , Xiong S , Chen S , Yin X , Wang L , Wang H . Appl. Surf. Sci., 2019,467/468:185.
[44]
潘继生(Pan J S), 邓家云(Deng J Y), 张棋翔(Zhang Q X), 阎秋生(Yan Q S) . 广东工业大学学报 (Journal of Guangdong University of Technology), 2019,36(2):70.
[45]
陆清华(Lu Q H), 李沅瑾(Li Y J), 宋凤丹(Song F D), 陈昊(Chen H), 齐随涛(Qi S T) . 化工进展 (Chemical Industry and Engineering Progress), 2018,37(8):3021.
[46]
任南琪(Ren N Q), 周显娇(Zhou X J), 郭婉茜(Guo W Q), 杨珊珊(Yang S S) . 化工学报 (CIESC Journal), 2013,64(1):84.
[47]
Yuan D , Zhang C , Tang S , Li X , Tang J , Rao Y , Wang Z , Zhang Q . Water. Res., 2019,163:114861. doi: 10.1016/j.watres.2019.114861 https://linkinghub.elsevier.com/retrieve/pii/S004313541930627X
[48]
Liu Z , Zhang L , Dong F , Dang J , Wang K , Wu D , Zhang J , Fang J . ACS Applied Nano Materials., 2018,1(8):4170.
[49]
Kumar A , Rana A , Sharma G , Naushad M , Dhiman P , Kumari A , Stadler F J . J. Mol. Liq., 2019,290:111177.
[50]
黄昱(Huang Y), 李小明(Li X M), 杨麒(Yang Q), 曾光明(Zeng G M), 刘精今(Liu J J) . 工业水处理 (Industrial Water Treatment), 2006,26(8):13.
[51]
Wang H , Chen T , Chen D , Zou X , Li M , Huang F , Sun F , Wang C , Shu D , Liu H . Appl. Catal. B:Environ., 2020,260.
[52]
Li Y , Zhang B , Liu X , Zhao Q , Zhang H , Zhang Y , Ning P , Tian S . J. Hazard. Mater., 2018,353:26. https://www.ncbi.nlm.nih.gov/pubmed/29631044

URL     pmid: 29631044
[53]
Yu Y , Huang F , He Y , Liu X , Song C , Xu Y , Zhang Y . Sci. Total. Environ., 2019,654:942. doi: 10.1016/j.scitotenv.2018.11.156 https://www.ncbi.nlm.nih.gov/pubmed/30453264

URL     pmid: 30453264
[54]
侯晓静(Hou X J) . 华中师范大学博士论文 (Doctoral Dissertation of Huazhong Normal University), 2018.
[55]
Hou L , Zhang Q , Jérôme F , Duprez D , Zhang H , Royer S . Appl. Catal. B: Environ. 2014,144:739.
[56]
Gonçalves N P F , Minella M , Fabbri D , Calza P , Malitesta C , Mazzotta E , Prevot A B . Chem. Eng. J., 2020,390(15):124619.
[57]
Rodrigues C S D , Soares O S G P , Pinho M T , Pereira M F R , Madeira L M . Appl. Catal. B: Environ., 2017,219:109.
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[8] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[9] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[10] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[11] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[12] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[13] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[14] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
阅读次数
全文


摘要

异相Fenton催化水污染控制