English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 966-977 DOI: 10.7536/PC191102 前一篇   后一篇

• 综述 •

2D钙钛矿太阳能电池的能带调控

周亿1, 胡晶晶1, 孟凡宁1, 刘彩云1, 高立国1,**(), 马廷丽2,3,**()   

  1. 1. 大连理工大学化工学院 精细化工国家重点实验室 大连 116024
    2. 九州工业大学 生命体工学科研究生院 福冈县北九州市 808-0196 日本
    3. 中国计量大学 材料科学与工程学院 杭州 310018
  • 收稿日期:2019-11-04 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 高立国, 马廷丽
  • 基金资助:
    国家自然科学基金项目(21703027); 国家自然科学基金项目(51772039); 国家自然科学基金项目(201903010); 国家自然科学基金项目(51972293)

Energy Band Regulation in 2D Perovskite Solar Cells

Yi Zhou1, Jingjing Hu1, Fanning Meng1, Caiyun Liu1, Liguo Gao1,**(), Tingli Ma2,3,**()   

  1. 1. State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
    2. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
    3. Department of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China
  • Received:2019-11-04 Online:2020-07-24 Published:2020-07-10
  • Contact: Liguo Gao, Tingli Ma
  • About author:
    ** e-mail: (Liguo Gao);
  • Supported by:
    National Natural Science Foundation of China(21703027); National Natural Science Foundation of China(51772039); National Natural Science Foundation of China(201903010); National Natural Science Foundation of China(51972293)

经过短短十年的发展,钙钛矿太阳能电池效率已经超过25%,极具商业化价值,这得益于三维(3D)钙钛矿材料具有合适的带隙、吸光系数高、电子迁移距离长等优点。但3D钙钛矿的稳定性依然是其亟待解决的问题。二维(2D)钙钛矿器件除了兼具3D钙钛矿的优异光电性质之外,其稳定性良好,是解决3D钙钛矿太阳能电池稳定性问题的一个可行方案。2D钙钛矿晶格中的疏水性大烷基胺阳离子能阻止湿气侵入的可能路径,使其成为光电器件的备选材料。由于2D钙钛矿对许多不同的有机和无机成分具有较高的耐受性,使其组成具有多样性,进而影响其能带变化。本文对2D钙钛矿的带隙调控及能带调控进行总结,希望对制备高效、稳定的低维度钙钛矿太阳能电池具有一定的指导意义。

Perovskite solar cells(PSCs) have achieved more than 25% efficiency in just a decade, which are of great commercial value. This is because the three-dimensional(3D) perovskite(PVK) layer has many advantages, such as suitable bandgap, high absorption coefficient and long electron diffusion length. However, unstability is still an urgent problem to be solved in 3D PSCs. Comparing with 3D perovskite materials, 2D perovskite crystals have recently attracted increasing attention due to some unique properties for improving stability. The hydrophobic bulky alkylammonium cations in 2D perovskite lattices can block the accessible pathways of moisture invasion, making them promising candidates for optoelectronic devices. Meanwhile, due to the tolerance of 2D perovskite to organic and inorganic elements, its chemical composition and energy band also change. This review highlights the importance of energy bands in 2D PSCs and summarizes bandgap regulation and energy level alignment(ELA) of 2D perovskite, which plays an important role in guiding the preparation of high-efficiency and stable low-dimensional perovskite solar cells.

Contents

1 Introduction

2 Structure of 2D PVK

3 Regulations to bandgap of 2D PVK

3.1 Changes in ‘n’

3.2 Component engineering

3.3 Preparation process

4 Regulations of energy level

4.1 Energy level regulations of 2D PVK

4.2 ELA between 2D PVK and charge-transport layer

4.3 3D PVK surface passivation by 2D PVK

5 Conclusion and outlook

()
图1 钙钛矿太阳能电池原理及常用电荷传输材料能带信息[6,7,8,9]
Fig.1 Principle of perovskite solar cells and band energy information for several usual charge-transport materials [6,7,8,9]
图2 将3D钙钛矿分别沿<100>、<110>和<111>方向切割获得2D钙钛矿示意图[25]
Fig.2 Schematic diagrams of two-dimension perovskite cutting along <100>, <110>, and <111>[25]. Copyright 2019, John Wiley and Sons.
图3 Ruddlesden-Popper型与Dion-Jacobson型钙钛矿二维层状结构示意图
Fig.3 Schematic diagram of two-dimensional layered structure of Ruddlesden-Popper and Dion-Jacobson phase perovskite
图4 以 V oc为函数作带隙的图,直线为肖克利-奎塞尔极限下,带隙对应最高V oc的90%[24,37,42,52~61]
Fig.4 A plot of bandgap as function of the V oc. The line is 90% of the maximum V oc at the Shoreley-Quezer limit[24,37,42,52~61]
表1 2D钙钛矿能带信息及电池器件性能参数
Table 1 2D perovskite band information and performance parameters of solar cells
Amino PVK n value CB
(eV)
VB
(eV)
Bandgap
(eV)
V oc
(eV)
J SC
(eV)
FF
(%)
PCE
(%)
ref
BA BA2MA n -1Pb n I3 n +1 1 2.31 4.55 2.24 0.58 0.06 29 0.01 62
2 2.89 4.88 1.99 0.80 1.50 33 0.39
3 3.53 5.38 1.85 0.93 9.42 46 4.02
4 3.87 5.43 1.56 0.87 9.08 30 2.39
3 3.61 5.57 1.96 1.05 11.23 68 7.99 85
3.74 5.70 1.96 1.23 13.61 72 12.07
3 4.08 5.90 1.82 0.93 3.16 43 1.26 86
3.88 5.70 1.82 0.97 12.79 55 6.82
BA2MA n -1Sn n I3 n +1 4 4.10 5.80 1.70 1.11 17.50 73 14.28 59
3 3.21 4.76 1.55 0.38 8.9 57 1.94 78
4 3.29 4.76 1.47 0.23 24.1 45 2.53
BA2Cs n -1Pb n I3 n +1 3 3.20 5.40 2.20 0.96 8.88 57 4.84 74
BDA BDAMAnPbnI3n+1 1 3.37 5.12 1.75 49
2 3.72 5.40 1.68
3 3.80 5.44 1.64
4 3.87 5.49 1.62
5 3.92 5.52 1.60 1.04 20.01 79 16.38
BEA BEA0.5MA n Pb n I3 n +1 1 3.21 5.24 2.03 53
2 3.57 5.37 1.80
3 3.85 5.45 1.60 1.06 20.62 68 14.86
CMA CMA2MA n Pb n I3 n +1 2 3.54 5.67 2.13 54
9 4.21 5.82 1.61 1.10 19.04 72 15.05
DAT DATMA n -1Pb n I3 n +1 3 3.59 5.36 1.77 1.01 2.17 44 0.97 87
GA GAPbI3 - 3.70 6.20 2.50 0.65 0.40 63 0.16 71
GA2PbI4 3.46 5.96 2.50 0.64 1.28 55 0.45
GAMA n Pb n I3 n +1 4 3.90 5.50 1.60 0.92 17.71 80 13.13 88
HA HAMA n -1Pb n I3 n +1 1 3.52 5.89 2.37 0.53 2.65 36 0.50 70
2 4.02 6.00 1.98 0.64 6.93 63 2.79
3 3.65 5.61 1.96 0.72 13.61 60 5.90
4 3.86 5.65 1.79 0.73 8.04 66 3.86
IC2H4NH3 (IC2H4NH3)2MA n -1Pb n I3 n +1 - 3.70 5.72 2.02 0.80 7.28 67 3.93 84
3.71 5.70 1.99 0.83 8.76 71 5.15
3.72 5.70 1.98 0.85 12.31 66 6.96
4.08 5.71 1.63 0.89 14.33 63 8.00
4.08 5.70 1.62 0.84 11.51 70 6.77
PA PA2MA n -1Pb n I3 n +1 5 3.75 5.42 1.67 1.13 18.89 49 10.41 58
PDA PDAMA n -1Pb n I3 n +1 4 4.00 5.65 1.65 0.98 19.50 69 13.30 24
PEI PEI2MA n -1Pb n I3 n +1 3 3.57 5.52 1.95 1.21 6.63 53 4.23 41
5 3.64 5.44 1.80 1.16 10.22 59 6.98
7 3.69 5.39 1.70 1.10 13.13 65 9.39
PEA PEA2MA n -1Pb n I3 n +1 3 3.17 5.27 2.10 73
5 3.55 5.27 1.72
10 3.57 5.27 1.70
40 3.71 5.23 1.52
1 2.37 4.73 2.36 0.71 0.48 44 0.15 72
2 3.25 5.37 2.12 0.77 2.38 65 1.19
3 3.59 5.53 1.94 0.76 4.48 48 1.62
5 3.65 5.30 1.65 1.11 15.01 67 11.01 56
2 3.58 5.72 2.14 89
10 4.19 5.84 1.65
PEA2MA n -1Pb n I3 n +1 5 3.60 5.22 1.63 1.18 15.40 74 13.2 90
F-PEA2MA n -1Pb n I3 n +1 5 4.13 5.72 1.59 1.06 18.00 76 14.3
MeO-PEA2MA n -1Pb n I3 n +1 5 3.42 5.02 1.60 1.10 12.10 71 9.4
PEA2MA n -1Pb n Br3 n +1 3 3.11 5.49 2.38 91
5 3.42 5.77 2.35
PEA2MA n -1Pb n (I x Cl1- x )3 n +1 6(I:Cl=12:7) 4.40 6.01 1.61 0.99 13.38 70.23 9.32 92
6(I:Cl=19:0) 4.32 5.92 1.60 0.93 10.58 66.36 6.52
6(I:Cl=14:5) 4.18 5.78 1.60 1.01 14.37 74.68 10.94
6(I:Cl=17:2) 4.34 5.91 1.57 0.95 18.18 73.66 12.78
PEA2FA n -1Pb n I3 n +1 1 2.40 4.73 2.33 0.77 20.21 62 9.68 77
2 3.37 5.37 2.00 0.79 20.32 61 9.81
3 3.74 5.53 1.79 0.826 21.19 66 11.46
PEA2FA n -1Sn n I3 n +1 - 3.50 4.90 1.40 0.47 20.07 74 6.98 79
FA x PEA1- x PbI3 - 4.20 5.70 1.50 1.04 22.08 77 17.71 52
PeDA PeDAMA n -1Pb n I3 n +1 1 2.28 4.30 2.02 49
2 2.62 4.60 1.98
3 3.15 4.98 1.83
4 3.28 5.04 1.76
5 3.64 5.29 1.65 1.10 15.28 77 12.95
PMA PMA2CuBr4 - 3.86 5.67 1.81 0.68 0.73 0.41 0.2 93
POPA (pyrene-O-propyl-NH3)2PbI4 1 2.30 4.60 2.30 1.04 2.81 47 1.38 65
ThMA ThMA2MA n -1Pb n I3 n +1 3 3.95 5.54 1.59 1.07 18.89 76 15.42 42
BdA BdAPbI4 1 2.96 5.33 2.37 0.87 2.89 43 1.08 64
HdA HdAPbI4 1 3.12 5.56 2.44 0.73 1.74 47 0.59
OdA OdAPbI4 1 2.93 5.36 2.43 0.73 0.05 47 0.01
图5 BA系2D钙钛矿的光学性质:紫外-可见吸收光谱(a)及光致发光光谱(b)[62]
Fig.5 Optical properties of BA-based 2D perovskite (a) absorption spectra and (b) photoluminescence spectra.Copyright 2015,American Chemical Society[62]
图6 浸泡法制备2D钙钛矿薄膜示意图[84]
Fig.6 Schematic diagram of immersion-method for 2D perovskite film.[84] Copyright 2016, John Wiley and Sons.
图7 (a) 3D钙钛矿薄膜与2D钙钛矿在晶界处的示意图和器件中各层的能带能级对准[98];(b) 含NH4SCN和不含NH4SCN的BA2MA2Pb3I10薄膜的能带对准;(c) 有机间隔阳离子的分子结构:PEA、F-PEA和MeO-PEA及其能带信息[90]
Fig.7 (a) Schematics of 3D perovskite film with 2D perovskite at grain boundaries and band structure of each layer in device[98] under a CC-BY 4.0 license(creativecommons.org/licenses/by/4.0/);(b) Energy band alignment of BA2MA2Pb3I10-based perovskite film with and without NH4SCN;(c) Molecular structure of organic spacer cations: PEA, F-PEA and MeO-PEA and its energy band information[90]. Copyright 2017, John Wiley and Sons.
图8 (a) 2D钙钛矿作为界面修饰的器件结构;(b)钙钛矿和PCBM界面的能级对准示意图和(c)钙钛矿作为界面修饰器件的热降解机理[30]
Fig.8 (a) Device structure of 2D perovskite as interface modification;(b) Schematic diagram of energy level alignment of perovskite and PCBM interface and (c) thermal degradation mechanism of 2D perovskite as interface modified device[30]. Copyright 2017,WILEY-VCH.
[1]
Kojima A , Teshima K , Shirai Y , Miyasaka T . J. Am. Chem. Soc., 2009,131:6050. https://www.ncbi.nlm.nih.gov/pubmed/19366264

URL     pmid: 19366264
[2]
[2019-11-29]. https://www.nrel.gov/pv/cell-efficiency.html. https://www.nrel.gov/pv/cell-efficiency.html
[3]
Snaith H J . J. Phys. Chem. Lett., 2013,4:3623.
[4]
D’Innocenzo V , Grancini G , Alcocer M J P , Kandada A R S , Stranks S D , Lee M M , Lanzani G , Snaith H J , Petrozza A . Nat. Commun., 2014,5:3586. https://www.ncbi.nlm.nih.gov/pubmed/24710005

URL     pmid: 24710005
[5]
Rong Y , Hu Y , Mei A , Tan H , Saidaminov M I , Seok S I , McGehee M D , Sargent E H , Han H . Science, 2018,361:8235.
[6]
Fakharuddin A , De R F , Watson T M , Schmidt-Mende L , Jose R . APL Mater., 2016,4:091505.
[7]
Zhao E , Gao L , Yang S , Wang L , Cao J , Ma T . Nano Res., 2018,11:5913.
[8]
Yang S , Guo Z , Gao L , Yu F , Zhang C , Fan M , Wei G , Ma T . Sol. RRL, 2019,3:1900212.
[9]
Meng F , Gao L , Yan Y , Cao J , Wang N , Wang T , Ma T . Carbon, 2019,145:290.
[10]
Rakstys K , Igci C , Nazeeruddin M K . Chem. Sci., 2019,10:6748. doi: 10.1039/c9sc01184f https://www.ncbi.nlm.nih.gov/pubmed/31391896

URL     pmid: 31391896
[11]
Huang J , Tan S , Lund P D , Zhou H . Energy Environ. Sci., 2017,10:2284.
[12]
Ava T T , Al Mamun A , Marsillac S , Namkoong G . Appl. Sci., 2019,9:188.
[13]
Zhang F , Bi D , Pellet N , Xiao C , Li Z , Berry J J , Zakeeruddin S M , Zhu K , Grätzel M . Energy Environ. Sci., 2018,11:3480.
[14]
Zhang F , Shi W D , Luo J S , Pellet N , Yi C Y , Li X , Zhao X M , Dennis T J S , Li X G , Wang S R , Xiao Y , Zakeeruddin S M , Bi D Q , Grätzel M . Adv. Mater., 2017,29:7.
[15]
Meng F N , Liu A M , Gao L G , Cao J M , Yan Y L , Wang N , Fan M Q , Wei G Y , Ma T L . J. Mater. Chem. A, 2019,7:8690.
[16]
Smith I C , Hoke E T , Solis-Ibarra D , McGehee M D , Karunadasa H I . Angew. Chem. -Int. Edit., 2014,53:11232.
[17]
Saliba M , Matsui T , Seo J Y , Domanski K , Cor-rea-Baena J P , Nazeeruddin M K , Zakeeruddin S M , Tress W , Abate A , Hagfeldt A , Grätzel M . Energy Environ. Sci., 2016,9:1989. doi: 10.1039/c5ee03874j https://www.ncbi.nlm.nih.gov/pubmed/27478500

URL     pmid: 27478500
[18]
Shen H , Duong T , Peng J , Jacobs D , Wu N , Gong J , Wu Y , Karuturi S K , Fu X , Weber K , Xiao X , White T P , Catchpolea K . Energy Environ. Sci., 2018,11:394.
[19]
Bush K A , Palmstrom A F , Yu Z J , Boccard M , Cheacharoen R , Mailoa J P , McMeekin D P , Hoye R L Z , Bailie C D , Leijtens T , Ian M P , Maxmillian C M , Nicholas R , Rohit P , Sarah S , Duncan H , Wen M , Farhad M , Henry J S , Tonio B , Zachary C H , Stacey F B , Michael D M . Nat. Energy, 2017,2:17009.
[20]
Bailie C D , McGehee M D . MRS Bull., 2015,40:681.
[21]
Jiang Q , Zhao Y , Zhang X , Yang X , Chen Y , Chu Z , Ye Q , Li X , Yin Z , You J . Nat. Photonics, 2019,13:460. doi: 10.1038/s41566-019-0398-2 https://doi.org/10.1038/s41566-019-0398-2
[22]
Gao L , Zhang F , Xiao C , Chen X , Larson B W , Berry J J , Zhu K . Adv. Funct. Mater., 2019 29:1901652. doi: 10.1002/adfm.v29.47 https://onlinelibrary.wiley.com/toc/16163028/29/47
[23]
Tsai H H , Nie W Y , Blancon J C , Toumpos C C S , Asadpour R , Harutyunyan B , Neukirch A J , Verduzco R , Crochet J J , Tretiak S , Pedesseau L , Even J , Alam M A , Gupta G , Lou J , Ajayan P M , Bedzyk M J , Kanatzidis M G , Mohite A D . Nature, 2016,536:312. https://www.ncbi.nlm.nih.gov/pubmed/27383783

URL     pmid: 27383783
[24]
Yang R , Li R , Cao Y , Wei Y , Miao Y , Tan W L , Jiao X , Chen H , Zhang L , Chen Q , Zhang H , Zou W , Wang Y , Yang M , Yi C , Wang N , Gao F , McNeill C R , Qin T , Wang J , Huang W . Adv. Mater., 2018 30:1804771. doi: 10.1002/adma.v30.51 http://doi.wiley.com/10.1002/adma.v30.51
[25]
Ortiz-Cervantes C , Carmona-Monroy P , Solis-Ibarra D . ChemSusChem, 2019,12:1560. doi: 10.1002/cssc.201802992 https://www.ncbi.nlm.nih.gov/pubmed/30699237

URL     pmid: 30699237
[26]
Saparov B , Mitzi D B . Chem. Rev., 2016,116:4558. doi: 10.1021/acs.chemrev.5b00715 https://www.ncbi.nlm.nih.gov/pubmed/27040120

URL     pmid: 27040120
[27]
Etgar L . Energy Environ. Sci., 2018,11:234. doi: 10.1039/C7EE03397D http://xlink.rsc.org/?DOI=C7EE03397D
[28]
Grancini G , Nazeeruddin M K . Nat. Rev. Mater., 2019,4:4.
[29]
Lin Y , Bai Y , Fang Y J , Chen Z L , Yang S , Zheng X P , Tang S , Liu Y , Zhao J J , Huang J . S. J. Phys. Chem. Lett., 2018,9:654.
[30]
Bai Y , Xiao S , Hu C , Zhang T , Meng X , Lin H , Yang Y , Yang S . Adv. Energy Mater., 2017,7:1701038.
[31]
Ali N , Wang X , Rauf S , Attique S , Khesro A , Ali S , Mushtaq N , Xiao H , Yang C P , Wu H . Sol. Energy, 2019,189:325.
[32]
Kim H , Lee S U , Lee D Y , Paik M J , Na H , Lee J , Seok S I . Adv. Energy Mater., 2019,9:1902740.
[33]
Lin Y , Bai Y , Fang Y , Wang Q , Deng Y , Huang J . ACS Energy Lett., 2017,2:1571.
[34]
Kim H , Huynh K A , Kim S Y , Le Q V , Jang H W . Phys. Status Solidi RRL, 2019,14:1900435.
[35]
Gao L , Zhang F , Chen X , Xiao C , Larson B W , Dunfield S P , Berry J J , Zhu K . Angew. Chem. Int. Ed., 2019,58:11737.
[36]
Zhou N , Shen Y H , Li L , Tan S Q , Liu N Zheng G H J , Chen Q , Zhou H P . J. Am. Chem. Soc., 2018 140:459. doi: 10.1021/jacs.7b11157 https://www.ncbi.nlm.nih.gov/pubmed/29243924

URL     pmid: 29243924
[37]
Zhang X , Ren X D , Liu B , Munir R , Zhu X J , Yang D , Li J B , Liu Y C , Smilgies D M , Li R P , Yang Z , Niu T Q , Wang X L , Amassian A , Zhao K , Liu S Z . Energy Environ. Sci., 2017,10:2095.
[38]
Quan L N , Yuan M , Comin R , Voznyy O , Beaure-gard E M , Hoogland S , Buin A , Kirmani A R , Zhao K , Amassian A , Kim D H , Sargent E H . J. Am. Chem. Soc., 2016,138:2649. doi: 10.1021/jacs.5b11740 https://www.ncbi.nlm.nih.gov/pubmed/26841130

URL     pmid: 26841130
[39]
Ma C , Leng C , Ji Y , Wei X , Sun K , Tang L , Yang J , Luo W , Li C , Deng Y , Feng S , Shen J , Lu S , Du C , Shi H . Nanoscale, 2016,8:18309. doi: 10.1039/c6nr04741f https://www.ncbi.nlm.nih.gov/pubmed/27714126

URL     pmid: 27714126
[40]
Grancini G , Roldan-Carmona C , Zimmermann I , Mos-coni E , Lee X , Martineau D , Narbey S , Oswald F , De An-gelis F , Graetzel M , Nazeeruddin M K . Nat. Commun., 2017,8:15684. https://www.ncbi.nlm.nih.gov/pubmed/28569749

URL     pmid: 28569749
[41]
Yao K , Wang X , Xu Y , Li F , Zhou L . Chem. Mater., 2016,28:3131.
[42]
Lai H , Kan B , Liu T , Zheng N , Xie Z , Zhou T , Wan X , Zhang X , Liu Y , Chen Y . J. Am. Chem. Soc., 2018,140:11639. doi: 10.1021/jacs.8b04604 https://www.ncbi.nlm.nih.gov/pubmed/30157626

URL     pmid: 30157626
[43]
Mao L , Ke W , Pedesseau L , Wu Y , Katan C , Even J , Wasielewski M R , Stoumpos C C , Kanatzidis M G . J. Am. Chem. Soc., 2018,140:3775. https://www.ncbi.nlm.nih.gov/pubmed/29465246

URL     pmid: 29465246
[44]
Li X , Ke W , Traore B , Guo P , Hadar I , Kepenekian M , Even J , Katan C , Stoumpos C C , Schaller R D , Kanatzidis M G . J. Am. Chem. Soc., 2019,141:12880. https://www.ncbi.nlm.nih.gov/pubmed/31313919

URL     pmid: 31313919
[45]
Chen M , Ju M G , Hu M , Dai Z , Hu Y , Rong Y , Han H , Zeng X C , Zhou Y , Padture N P . ACS Energy Lett., 2018,4:276.
[46]
Ahmad S , Fu P , Yu S , Yang Q , Liu X , Wang X , Wang X , Guo X , Li C . Joule, 2019,3:794.
[47]
Li Y , Milic J V , Ummadisingu A , Seo J Y , Im J H , Kim H S , Liu Y , Dar M I , Zakeeruddin S M , Wang P , Hagfeldt A , Grätzel M . Nano Lett., 2019,19:150. doi: 10.1021/acs.nanolett.8b03552 https://www.ncbi.nlm.nih.gov/pubmed/30540195

URL     pmid: 30540195
[48]
Ke W , Mao L , Stoumpos C C , Hoffman J , Spanopoulos I , Mohite A D , Kanatzidis M G . Adv. Energy Mater., 2019,9:1803384.
[49]
Zheng Y , Niu T , Qiu J , Chao L , Li B , Yang Y , Li Q , Lin C , Gao X , Zhang C , Xia Y , Chen Y , Huang W . Sol. RRL, 2019,3:1900090.
[50]
Huang P , Kazim S , Wang M , Ahmad S . ACS Energy Lett., 2019,4:2960.
[51]
Wang Z , Song Z , Yan Y , Liu S , Yang D . Adv. Sci., 2019,6:1801704.
[52]
Li N , Zhu Z , Chueh C C , Liu H , Peng B , Petrone A , Li X , Wang L , Jen A K Y . Adv. Energy Mater., 2017,7:1601307.
[53]
Li P , Liang C , Liu X L , Li F , Zhang Y , Liu X T , Gu H , Hu X , Xing G , Tao X , Song Y . Adv Mater., 2019,31:1901966. doi: 10.1002/adma.v31.35 https://onlinelibrary.wiley.com/toc/15214095/31/35
[54]
Wei Y , Chu H , Tian Y , Chen B , Wu K , Wang J , Yang X , Cai B , Zhang Y , Zhao J . Adv. Energy Mater., 2019,9:1900612.
[55]
Ma C , Shen D , Ng T W , Lo M F , Lee C S . Adv. Mater., 2018,30:1800710.
[56]
Zhang X , Wu G , Fu W , Qin M , Yang W , Yan J , Zhang Z , Lu X , Chen H . Adv. Energy Mater., 2018,8:1702498.
[57]
Fu W , Wang J , Zuo L , Gao K , Liu F , Ginger D S , Jen A K Y . ACS Energy Lett., 2018,3:2086.
[58]
Cheng P , Xu Z , Li J , Liu Y , Fan Y , Yu L , Smilgies D M , Mueller C , Zhao K , Liu S F . ACS Energy Lett., 2018,3:1975.
[59]
Wu G , Zhou J , Zhang J , Meng R , Wang B , Xue B , Leng X , Zhang D , Zhang X , Bi S , Zhou Q , Wei Z , Zhou H , Zhang Y . Nano Energy, 2019,58:706.
[60]
Wang Z , Lin Q , Chmiel F P , Sakai N , Herz L M , Snaith H J . Nat. Energy, 2017,2:17135.
[61]
Rajagopal A , Stoddard R J , Jo S B , Hillhouse H W , Jen A K . Nano Lett., 2018,18:3985. doi: 10.1021/acs.nanolett.8b01480 https://www.ncbi.nlm.nih.gov/pubmed/29733214

URL     pmid: 29733214
[62]
Cao D H , Stoumpos C C , Farha O K , Hupp J T , Kanatzidis M G . J. Am. Chem. Soc., 2015,137:7843.
[63]
Mao L , Tsai H , Nie W , Ma L , Im J , Stoumpos C C , Malliakas C D , Hao F , Wasielewski M R , Mohite A D , Kanatzidis M G . Chem. Mater., 2016,28:7781.
[64]
Safdari M , Svensson P H , Hoang M T , Oh I , Kloo L , Gardner J M . J. Mater. Chem. A, 2016,4:15638.
[65]
Passarelli J V , Fairfield D J , Sather N A , Hendricks M P , Sai H , Stern C L , Stupp S I . J. Am. Chem. Soc., 2018,140:7313. doi: 10.1021/jacs.8b03659 https://www.ncbi.nlm.nih.gov/pubmed/29869499

URL     pmid: 29869499
[66]
Li X , Guo P , Kepenekian M , Hadar I , Katan C , Even J , Stoumpos C C , Schaller R D , Kanatzidis M G . Chem. Mater., 2019,31:3582.
[67]
Cho K T , Paek S , Grancini G , Roldán-Carmona C , Gao P , Lee Y , Nazeeruddin M K . Energy Environ. Sci., 2017,10:621.
[68]
Eperon G E , Stranks S D , Menelaou C , Johnston M B , Herz L M , Snaith H J . Energy Environ. Sci., 2014,7:982.
[69]
Noh J H , Im S H , Heo J H , Mandal T N , Seok S I . Nano Lett., 2013,13:1764. doi: 10.1021/nl400349b https://www.ncbi.nlm.nih.gov/pubmed/23517331

URL     pmid: 23517331
[70]
Jung M H . J. Mater. Chem. A, 2019,7:14689.
[71]
Kulkarni S A , Baikie T , Muduli S , Potter R , Chen S , Yanan F , Bishop P , Lim S S , Sum T C , Mathews N , White T . J. Jpn. J. Appl. Phys., 2017, 56: 08MC05.
[72]
Gan X , Wang O , Liu K , Du X , Guo L , Liu H . Sol. Energy Mater. Sol. Cells, 2017,162:93.
[73]
Yuan M , Li Na Q , Comin R , Walters G , Sabatini R , Voznyy O , Hoogland S , Zhao Y , Beauregard E M , Kanjanaboos P , Lu Z , Kim D H , Sargent E H . Nat. Nanotechnol., 2016,11:872. https://www.ncbi.nlm.nih.gov/pubmed/27347835

URL     pmid: 27347835
[74]
Liao J F , Rao H S , Chen B X , Kuang D B , Su C Y J . Mater. Chem. A, 2017,5:2066.
[75]
Zhou Y , Yang M , Pang S , Zhu K , Padture N P . J. Am. Chem. Soc., 2016,138:5535. doi: 10.1021/jacs.6b02787 https://www.ncbi.nlm.nih.gov/pubmed/27088448

URL     pmid: 27088448
[76]
Yan J , Fu W , Zhang X , Chen J , Yang W , Qiu W , Wu G , Liu F , Heremans P , Chen H . Mater. Chem. Front., 2018,2:121.
[77]
Ke L , Gan X , Zhao W , Guo L , Liu H . J. Alloys Compd., 2019,788:954.
[78]
Cao D H , Stoumpos C C , Yokoyama T , Logsdon J L , Song T B , Farha O K , Wasielewski M R , Hupp J T , Kanatzidis M G . ACS Energy Lett., 2017,2:982.
[79]
Ran C , Xi J , Gao W , Yuan F , Lei T , Jiao B , Hou X , Wu Z . ACS Energy Lett., 2018,3:713.
[80]
Bat-El C , Wierzbowska M , Etgar L . Adv. Funct. Mater., 2017,27:1604733.
[81]
Chen Y , Sun Y , Peng J , Zhang W , Su X , Zheng K , Pullerits T , Liang Z . Adv. Energy Mater., 2017,7:1700162.
[82]
Zheng Y C , Yang S , Chen X , Chen Y , Hou Y , Yang H G . Chem. Mater., 2015,27:5116.
[83]
Wang S , Ma J , Li W , Wang J , Wang H , Shen H , Li J , Wang J , Luo H , Li D . J. Phys. Chem. Lett., 2019,10:2546. doi: 10.1021/acs.jpclett.9b01011 https://www.ncbi.nlm.nih.gov/pubmed/31050442

URL     pmid: 31050442
[84]
Koh T M , Shanmugam V , Schlipf J , Oesinghaus L , Muller-Buschbaum P , Ramakrishnan N , Swamy V , Mathews N , Boix P P , Mhaisalkar S G . Adv. Mater., 2016,28:3653. doi: 10.1002/adma.201506141 https://www.ncbi.nlm.nih.gov/pubmed/26990287

URL     pmid: 26990287
[85]
Chen J , Lian X , Zhang Y , Yang W , Li J , Qin M , Lu X , Wu G , Chen H . J. Mater. Chem. A, 2018,6:18010.
[86]
Zhang X , Wu G , Yang S , Fu W , Zhang Z , Chen C , Liu W , Yan J , Yang W , Chen H . Small, 2017,13:1700611.
[87]
Yao Z , Zhou Y , Yin X , Li X , Han J , Tai M , Zhou Y , Li J , Hao F , Lin H . CrystEngComm, 2018,20:6704.
[88]
Zhang Y , Chen J , Lian X , Qin M , Li J , Andersen T R , Lu X , Wu G , Li H , Chen H . Small Methods, 2019,3:1900375.
[89]
Qing J , Liu X K , Li M , Liu F , Yuan Z , Tiukalova E , Yan Z , Duchamp M , Chen S , Wang Y , Bai S , Liu J , Snaith H J , Lee C , Sum T , Gao F . Adv. Energy Mater., 2018,8:1800185.
[90]
Fu W , Liu H , Shi X , Zuo L , Li X , Jen A K Y . Adv. Funct. Mater., 2019,29:1900221.
[91]
Quan L N , Zhao Y , de Arquer F P G , Sabatini R , Walters G , Voznyy O , Comin R , Li Y , Fan J Z , Tan H , Pan J , Yuan M , Bakr O M , Lu Z , K D , Sargent E H . Nano Lett., 2017,17:3701. https://www.ncbi.nlm.nih.gov/pubmed/28475344

URL     pmid: 28475344
[92]
Chen H , Xia Y , Wu B , Liu F , Niu T , Chao L , Xing G , Sum T , Chen Y , Huang W . Nano Energy, 2019,56:373.
[93]
Li X , Li B , Chang J , Ding B , Zheng S , Wu Y , Yang J , Yang G , Zhong X , Wang J . ACS Appl. Energy Mater., 2018,1:2709.
[94]
Wang S , Sakurai T , Wen W , Qi Y . Adv. Mater. Interfaces, 2018,5:1800260.
[95]
Stolterfoht M , Caprioglio P , Wolff C M , Márquez J A , Nordmann J , Zhang S , Rothhardt D , Hörmann U , Amir Y , Redinger A , Kegelmann L , Zu F , Albrecht S , Koch N , Kirchartz T , Saliba M , Unold T , Neher D . Energy Environ. Sci., 2019,12:2778.
[96]
Zhang F , Zhu K . Adv. Energy Mater., 2019,10:1902579.
[97]
Yao D , Zhang C , Zhang S , Yang Y , Du A , Waclawik E , Yu X , Wilson G J , Wang H . ACS Appl. Mater. Interfaces, 2019,11:29753 doi: 10.1021/acsami.9b06305 https://www.ncbi.nlm.nih.gov/pubmed/31135124

URL     pmid: 31135124
[98]
Lee J W , Dai Z , Han T H , Choi C , Chang S Y , Lee S J , De Marco N , Zhao H , Sun P , Huang Y , Yang Y . Nat. Commun., 2018,9:3021. doi: 10.1038/s41467-018-05454-4 https://www.ncbi.nlm.nih.gov/pubmed/30069012

URL     pmid: 30069012
[99]
Zhang F , Kim D H , Lu H , Park J S , Larson B W , Hu J , Gao L , Xiao C , Reid O G , Chen X , Zhao Q , Ndione, P F , Berry J J , You W , Walsh A , Beard M C , Zhu K . J. Am. Chem. Soc., 2019,141:5972. https://www.ncbi.nlm.nih.gov/pubmed/30882210

URL     pmid: 30882210
[100]
Lian X , Chen J , Zhang Y , Tian S , Qin M , Li J , Andersen T R , Wu G , Lu X , Chen H . J. Mater. Chem. A, 2019,7:18980.
[101]
Liu B , Long M , Cai M , Ding L , Yang J . Nano Energy, 2019,59:715.
[102]
Gharibzadeh S , Nejand B A , Jakoby M , Abzieher T , Hauschild D , Moghadamzadeh S , Schwenzer J A , Brenner P , Schmager R , Haghighirad A A , Weinhardt L , Lemmer U , Richards B S , Howard I A , Paetzold U W . Adv. Energy Mater., 2019,9:1803699.
[103]
Yuan J , Jiang Y , He T , Shi G , Fan Z , Yuan M . Sci. China: Chem., 2019,62:629.
[104]
Wei F , Jiao B , Dong H , Xu J , Lei T , Zhang J , Yu Y , Ma L , Wang D , Chen J , Hou X , Wu Z . J. Mater. Chem. A, 2019,7:16533.
[105]
Chen J , Seo J Y , Park N G . Adv. Energy Mater., 2018,8:1702714.
[106]
Huang X , Bi W , Jia P , Tang Y , Lou Z , Hu Y , Cui Q , Hou Y , Teng F . Org. Electron., 2019,67:101.
[1] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[2] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[3] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[4] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[5] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[6] 付红红, 栾伟玲*, 袁斌霞, 涂善东. 纳米晶/聚合物太阳能电池[J]. 化学进展, 2012, (9): 1837-1844.
阅读次数
全文


摘要

2D钙钛矿太阳能电池的能带调控