English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1350-1361 DOI: 10.7536/PC190413 前一篇   后一篇

• •

金属有机框架材料在CO2化学固定中的应用

李嘉伟, 任颜卫**(), 江焕峰   

  1. 华南理工大学化学与化工学院 广东省功能分子工程重点实验室 广州 510641
  • 收稿日期:2019-04-10 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 任颜卫
  • 基金资助:
    国家重点研发计划项目(2016YFA0602900); 国家自然科学基金项目(21372087)

Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide

Jiawei Li, Yanwei Ren**(), Huanfeng Jiang   

  1. School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
  • Received:2019-04-10 Online:2019-10-15 Published:2019-08-05
  • Contact: Yanwei Ren
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2016YFA0602900); National Natural Science Foundation of China(21372087)

作为大气中的主要温室气体,CO2在世界范围内引发了一系列与环境和能源有关的问题。因此,迫切需要开发多种方法来捕获CO2并将其转化为有用的化工产品,从而有效改善环境,促进可持续发展。在过去的几十年中,金属有机框架(MOFs)材料由于其多活性位点、高比表面积、结构可修饰、易于功能化而表现出突出的多相催化性能。这些特性赋予了MOFs催化剂在CO2化学固定领域独特的优越性。本文综述了MOFs催化剂在CO2参与的有机合成反应中的应用,如CO2与环氧化物、末端炔、炔丙醇、炔丙胺等发生的化学反应,并重点阐述了MOFs中不同种类催化位点与反应性能之间的构效关系。

As the main greenhouse gas in the atmosphere, carbon dioxide(CO2) has caused a series of environmental and energy-related problems worldwide. Therefore, there is an urgent need to develop a variety of methods to capture CO2 and convert it into useful chemical products, thus effectively improving the environment and promoting sustainable development. In the past decades, metal-organic frameworks(MOFs) have shown prominent heterogeneous catalytic activity due to their multiple active sites, large BET surface area, structural diversity and easy functionalization. These characteristics endow MOFs catalysts with unique advantages in the field of CO2 chemical fixation. The application of MOFs catalysts in organic synthesis involving CO2, such as chemical reactions of CO2 with epoxides, terminal alkynes, propargyl alcohol and propargyl amine are reviewed herein, and the structure-function relationship between the active sites within MOFs and catalytic performances are illustrated.

()
图式1 CO2与环氧化物合成环状碳酸酯反应机理
Scheme. 1 Proposed mechanism for the cyclic carbonate synthesis from CO2 and epoxide
图式2 ZIF-67催化的CO2与环氧化物合成环状碳酸酯[28]
Scheme. 2 Synthesis of cyclic carbonates from CO2 and epoxides catalyzed by ZIF-67[28]
图式3 IRMOF-3后合成修饰固载季胺盐及其催化环状碳酸酯合成[34]
Scheme. 3 Procedure for the synthesis of functionalized IRMOF-3 and the synthesis of cyclic carbonates[34]
图式4 IRMOF中两种Zn4O簇的结构可逆转化及其催化环状碳酸酯合成[36]
Scheme. 4 Reversible structural change of Zn4O clusters in IRMOFs and the synthesis of cyclic carbonates[36]
图式5 Cu-MOF催化环状碳酸酯合成[38]
Scheme. 5 Synthesis of cyclic carbonates catalyzed by a Cu-MOF[38]
图式6 MIL-101-N(n-Bu)3Br和MIL-101-P(n-Bu)3Br催化环状碳酸酯合成[42]
Scheme. 6 Synthesis of cyclic carbonates catalyzed by MIL-101-N(n-Bu)3Br and MIL-101-P(n-Bu)3Br[42]
图式7 (I-)Meim-UiO-66催化环状碳酸酯合成[47]
Scheme. 7 Synthesis of cyclic carbonates catalyzed by(I-)Meim-UiO-66[47]
图式8 手性salen-Ni基MOF催化环状碳酸酯合成[57]
Scheme. 8 Synthesis of cyclic carbonates catalyzed by a chiral salen-Ni based MOF[57]
图式9 手性卟啉-salen基MOF催化环状碳酸酯合成[59]
Scheme. 9 Synthesis of cyclic carbonates catalyzed by a chiral porphyrin-salen based MOF[59]
图式10 MMCF-2催化环状碳酸酯合成[62]
Scheme. 10 Synthesis of cyclic carbonates catalyzed by MMCF-2[62]
图式11 MOF-525、PCN-222 和PCN-224 催化环状碳酸酯合成[64]
Scheme. 11 Synthesis of cyclic carbonates catalyzed by MOF-525, PCN-222 和PCN-224[64]
图式12 CO2与末端炔的羧基化反应机理
Scheme. 12 Reaction mechanism of carboxylation of CO2 with terminal alkynes
图式13 Ag@MIL-101催化CO2与末端炔的羧基化反应[68]
Scheme. 13 Carboxylation of CO2 with terminal alkynes catalyzed Ag@MIL-101[68]
图式14 银簇基MOFs催化CO2与炔丙胺的环化反应[71]
Scheme. 14 Cycloaddition of CO2 with propargylamine catalyzed by silver cluster based MOFs[71]
图式15 负载Ag+的MOFs催化CO2与炔丙醇的环化反应[72]
Scheme. 15 Cycloaddition of CO2 with propargyl alcohol catalyzed by Ag+ supported MOFs[72]
图式16 无贵金属MOF催化CO2与炔丙醇的环化反应[73]
Scheme. 16 Cycloaddition of CO2 with propargyl alcohol catalyzed by a noble-metal-free MOFs[73]
[1]
Zhao Z, Kong X, Yuan Q, Xie H, Yang D, Zhao J, Fan H, Jiang L . Phys. Chem. Chem. Phys., 2018,20:19314.
[2]
Liu D, Li G, Liu J, Wei Y, Guo H . ACS Appl. Mater. Inter., 2018,10:22119.
[3]
Calabrese C, Liotta L F, Giacalone F, Gruttadauria M, Aprile C . ChemCatChem, 2019,11:560.
[4]
Tang F, Hou J, Liang K, Huang J, Liu Y N . Eur. J. Inorg. Chem., 2018,4175.
[5]
Chen Y Z, Zhang R, Jiao L, Jiang H L . Coord. Chem. Rev., 2018,362:1.
[6]
Dhakshinamoorthy A, Asiri A M, Garcia H . Chem. Soc. Rev., 2015,44:1922.
[7]
Drake T, Ji P, Lin W . Acc. Chem. Res., 2018,51:2129.
[8]
Jiao L, Wang Y, Jiang H L, Xu Q . Adv.Mater., 2018,30:e1703663.
[9]
Wang H, Li J . Acc. Chem. Res., 2019,52:1968.
[10]
Wang H, Lustig W P, Li J . Chem. Soc. Rev., 2018,47:4729.
[11]
Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nystrom A M, Zou X . J. Am. Chem. Soc., 2016,138:962.
[12]
Kim S, Joarder B, Hurd J A, Zhang J, Dawson K W, Gelfand B S, Wong N E, Shimizu G K H . J. Am. Chem. Soc., 2018,140:1077.
[13]
Mouarrawis V, Plessius R, Vlugt J I, Reek J N H . Front. Chem., 2018,6:623.
[14]
Fujie K, Kitagawa H . Coord. Chem. Rev., 2016,307:382.
[15]
Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer R A . Chem. Soc. Rev., 2014,43:6062.
[16]
Yang Q H, Xu Q, Jiang H L . Chem. Soc. Rev., 2017,46:4774.
[17]
Liu J, Thallapally P K. McGrail B P, Brown D R, Liu J . Chem. Soc. Rev., 2012,41:2308.
[18]
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R . Chem. Rev., 2012,112:724.
[19]
Yu J, Xie L H, Li J R, Ma Y, Seminario J M, Balbuena P B . Chem. Rev., 2017,117:9674.
[20]
Leitner W . Coord. Chem. Rev., 1996,155:257.
[21]
He H, Perman J A, Zhu G, Ma S . Small, 2016,12:6309.
[22]
Liang J, Huang Y B, Cao R . Coord. Chem. Rev., 2019,378:32.
[23]
Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F . Mater. Horiz., 2017,4:345.
[24]
Park K S, Ni Z, Cote A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O’Keeffe M, Yaghi O M . Proc. Natl. Acad. Sci., 2006,103:10186.
[25]
Miralda C M, Macias E E, Zhu M, Ratnasamy P, Carreon M A . ACS Catal., 2011,2:180.
[26]
Tharun J, Mathai G, Kathalikkattil A C, Roshan R, Won Y S, Cho S J, Chang J S, Park D W . ChemPlusChem, 2015,80:715.
[27]
Kuruppathparambil R R, Jose T, Babu R, Hwang G Y, Kathalikkattil A C, Cherian A, Kim D W, Park D W . Appl.Catal. B: Environ., 2016,182:562.
[28]
Mousavi B, Chaemchuen S, Moosavi B, Luo Z, Gholampour N, Verpoort F . New J. Chem., 2016,40:5170.
[29]
Bhin K M, Jose T, Kuruppathparambil R R, Kim D W, Chung Y, Park D W . J. CO2 Util., 2017,17:112.
[30]
Ryu H, Roshan R, Kim M I, Kim D W, Selvaraj M, Park D W . Korean J. Chem. Eng., 2017,34:928.
[31]
Ugale B, Dhankhar S S, Nagaraja C M . Inorg. Chem., 2016,55:9757.
[32]
Eddaoudi M, Li L, Yaghi O M . J. Am. Chem. Soc., 2000,122:1391.
[33]
Song J, Zhang Z, Hu S, Wu T, Jiang T, Han B . Green Chem., 2009,11:1031.
[34]
Zhou X, Zhang Y, Yang X, Zhao L, Wang G . J. Mol. Catal. A: Chem., 2012,361/362:12.
[35]
Babu R, Kathalikkattil A C, Roshan R, Tharun J, Kim D W, Park D W . Green Chem., 2016,18:232.
[36]
Li J, Ren Y, Qi C, Jiang H . Eur. J. Inorg. Chem., 2017,1478.
[37]
Chui S S Y, Lo S M F, Charmant J P H, Orpen A G, Williams I D . Science, 1999,283:1148.
[38]
Li P Z, Wang X J, Liu J, Phang H S, Li Y, Zhao Y . Chem. Mater., 2017,29:9256.
[39]
He H M, Sun Q, Gao W Y, Perman J A, Sun F X, Zhu G S, Aguila B, Forrest K, Space B, Ma S Q . Angew. Chem. Int. Ed., 2018,57:4657.
[40]
Ferey G . Science, 2005,310:1119.
[41]
Zalomaeva O V, Chibiryaev A M, Kovalenko K A, Kholdeeva O A, Balzhinimaev B S, Fedin V P . J. Catal., 2013,298:179.
[42]
Ma D, Li B, Liu K, Zhang X, Zou W, Yang Y, Li G, Shi Z. Feng S . J. Mater. Chem. A, 2015,3:23136.
[43]
Ding M, Jiang H L . ACS Catal., 2018,8:3194.
[44]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P . J. Am. Chem. Soc., 2008,130:13850.
[45]
Kim J, Kim S N, Jang H G, Seo G, Ahn W S . Appl. Catal. A: Gen., 2013,453:175.
[46]
Liu L, Zhang J, Fang H, Chen L, Su C Y . Chem. Asian J., 2016,11:2278.
[47]
Liang J, Chen R P, Wang X Y, Liu T T, Wang X S, Huang Y B, Cao R . Chem. Sci., 2017,8:1570.
[48]
Ding L G, Yao B J, Jiang W L, Li J T, Fu Q J, Li Y A, Liu Z H, Ma J P, Dong Y B . Inorg. Chem., 2017,56:2337.
[49]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M . Science, 2013,341:1230444.
[50]
Yang D A, Cho Y, Kim J, Yang S T, Ahn W S . Energy Environ. Sci., 2012,5:6465.
[51]
Barthelet K, Férey G, Riou D . Chem. Commun., 2004,520.
[52]
Lescouet T, Chizallet C, Farrusseng D . ChemCatChem, 2012,4:1725.
[53]
Liu L, Wang S M, Han Z B, Ding M L, Yuan D Q, Jiang H L . Inorg. Chem., 2016,55:3558.
[54]
Wei N, Zhang Y, Liu L, Han Z B, Yuan D Q . Appl. Catal. B: Environ., 2017,219:603.
[55]
Dong J, Xu H. Hou S L, Wu Z L, Zhao B . Inorg. Chem., 2017,56:6244.
[56]
Ren Y, Shi Y, Chen J, Yang S, Qi C, Jiang H . RSC Adv., 2013,3:2167.
[57]
Ren Y, Cheng X, Yang S, Qi C, Jiang H, Mao Q . Dalton Trans., 2013,42:9930.
[58]
Li J, Ren Y, Qi C, Jiang H . Dalton Trans., 2017,46:7821.
[59]
Li J, Fan Y, Ren Y, Liao J, Qi C, Jiang H . Inorg. Chem., 2018,57:1203.
[60]
Liang J, Xie Y Q, Wu Q, Wang X Y, Liu T T, Li H F, Huang Y B, Cao R . Inorg. Chem., 2018,57:2584.
[61]
He L, Nath J K, Lin Q . Chem. Commun., 2019,55:412.
[62]
Gao W Y, Chen Y, Niu Y, Williams K, Cash L, Perez P J, Wojtas L, Cai J, Chen Y S, Ma S . Angew. Chem. Int. Ed., 2014,53:2615.
[63]
Zhu J, Usov P M, Xu W, Celis-Salazar P J, Lin S, Kessinger M C, Landaverde-Alvarado C, Cai M, May A M, Slebodnick C, Zhu D, Senanayake S D, Morris A J . J. Am. Chem. Soc., 2018,140:993.
[64]
Epp K, Semrau A L, Cokoja M, Fischer R A . ChemCatChem, 2018,10:3506.
[65]
Guo C X, Yu B, Xie J N, He L N . Green Chem., 2015,17:474.
[66]
Wu Z, Sun L, Liu Q, Yang X, Ye X, Hu Y, Huang Y . Green Chem., 2017,19:2080.
[67]
Yu D, Tan M X, Zhang Y . Adv. Synth. Catal., 2012,354:969.
[68]
Liu X H, Ma J G, Niu Z, Yang G M, Cheng P . Angew. Chem. Int. Ed., 2015,54:988.
[69]
Zhu N N, Liu X H, Li T, Ma J G, Cheng P, Yang G M . Inorg. Chem., 2017,56:3414.
[70]
Dutta G, Jana A K, Singh D K, Eswaramoorthy M, Natarajan S . Chem. Asian J., 2018,13:2677.
[71]
Chang Z, Jing X, He C, Liu X, Duan C . ACS Catal., 2018,8:1384.
[72]
Zhang G, Yang H, Fei H . ACS Catal., 2018,8:2519.
[73]
Hou S L, Dong J, Jiang X L, Jiao Z H, Zhao B . Angew. Chem. Int. Ed., 2019,58:577.
[1] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[2] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[3] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[4] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[5] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[6] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[7] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[8] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[9] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[10] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[11] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[12] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[13] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[14] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[15] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.