English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1086-1102 DOI: 10.7536/PC190117 前一篇   后一篇

• •

二硫化钼基复合材料的合成及光催化降解与产氢特性

吴正颖1, 刘谢1, 刘劲松2,**(), 刘守清1, 查振龙1, 陈志刚1,**()   

  1. 1. 苏州科技大学 化学生物与材料工程学院 江苏省环境功能材料重点实验室 苏州 215009
    2. 南京航空航天大学 材料科学与技术学院 南京 211106
  • 收稿日期:2019-01-12 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 刘劲松, 陈志刚
  • 基金资助:
    国家自然科学基金项目(51478285); 江苏省自然科学基金项目(BK20151198); 苏州市科技发展计划项目(SYG201818); 中央高校基本科研业务费专项资金(NS2017038)

Molybdenum Disulfide Based Composites and Their Photocatalytic Degradation and Hydrogen Evolution Properties

Zhengying Wu1, Xie Liu1, Jinsong Liu2,**(), Shouqing Liu1, Zhenlong Zha1, Zhigang Chen1,**()   

  1. 1. Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
    2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2019-01-12 Online:2019-08-15 Published:2019-05-30
  • Contact: Jinsong Liu, Zhigang Chen
  • About author:
    ** E-mail: (Jinsong Liu)
    (Zhigang Chen)
  • Supported by:
    National Natural Science Foundation of China(51478285); Natural Science Foundation of Jiangsu Province(BK20151198); Science and Technology Development Project of Suzhou(SYG201818); Fundamental Research Funds for the Central Universities(NS2017038)

随着环境污染和能源短缺的加剧,无污染环境修复技术及清洁能源替代工程已成为一项重要而紧迫的任务。作为层状结构的过渡金属硫化物,二硫化钼带隙较窄,边缘具有高的反应活性,容易与其他物质形成复合结构,是近年来光催化环境修复及清洁能源领域的研究热点。本文详细介绍了半导体二硫化钼及其复合物的合成方法和光催化降解与产氢行为,重点阐述了二硫化钼及其复合物的具体复合方式、光催化降解污染物活性、光催化产氢活性以及具体的降解与产氢机理等方面的内容,并举例说明。二硫化钼及其复合物在光催化降解污染物和光催化产氢方面具有绿色、廉价、高效等优点,在环境修复及清洁能源领域具有巨大的潜力和应用发展前景。

With the gradual aggravation of environmental pollution and energy shortage, both developing technology on non-pollution environmental restoration and exploring project on alternative clean energy have recently become a very important and quite urgent task. As one of the transition metal sulfides with layered structures similar to graphene, molybdenum disulfide(MoS2) has become a research hotspot in the field of photocatalytic environmental remediation and clean energy(hydrogen generation) due to its narrow band gap, high reaction activity of the edges, and ease of forming a composite structure with other substances. This paper mainly introduces the synthesis methods, photocatalytic degradation and hydrogen generation behaviors of the MoS2 and its composites. Detailed methodologies for the synthesis of semiconductor MoS2 and its composites, photocatalytic degradation activity of pollutants, photocatalytic hydrogen generation activity and the corresponding mechanisms are emphasized and illustrated by a great many of the typical examples. MoS2 and its composites have displayed many advantages including environment friendliness, low cost and high efficiency in photocatalytic degradation of pollutants and photocatalytic hydrogen production. As the bright future materials, MoS2 and its composites have a broad application prospect in the field of environmental restoration and clean energy with the further development of its general mechanism.

()
图1 (a)半导体光催化过程机理[14],(b)二硫化钼的三种晶体结构[15],(c)二硫化钼本体和单层的能带结构[15]
Fig. 1 (a) Schematic illustration of basic mechanism of a semiconductor photocatalytic process[14],(b) three crystal structures of molybdenum disulfide[15],(c) band structures for bulk and monolayer MoS2[15]
图2 不同半导体的导带和价带位置
Fig. 2 Conductor band and valence band positions of different semiconductors
图3 (a)花状MoS2微球的SEM图[21],(b)花状MoS2纳米微球的SEM图[22],(c)MoS2纳米片的TEM图[23],(d)无定形球状MoS2的TEM图[24]
Fig. 3 (a) SEM image of flower-like MoS2 microsphere[21],(b) SEM image of flower-like MoS2 spheres[22],(c) TEM image of MoS2 nanosheets[23], and(d) TEM image of amorphous spherical MoS2[24]
图4 (a)少层MoS2包覆TiO2纳米带的TiO2@MoS2异质结构SEM图[27],(b)MoS2@TiO2异质结构SEM图[35],(c)TiO2@MoS2异质结构SEM图[35], (d)MoS2@SnO2复合物的SEM图[42], (e)MoS2/MoOx异质结构的SEM图[44], (f)MoS2/BiVO4复合物异质结构的SEM图[48]和(g)少层MoS2/BiOBr空心微球的TEM图[49]
Fig. 4 (a) SEM image of MoS2 thin layer coated with TiO2 nanobelt TiO2@MoS2 heterostructure[27],(b) SEM image of MoS2@TiO2 heterostructure[35],(c) SEM image of TiO2@MoS2 heterostructure[35],(d) SEM image of MoS2@SnO2 complex[42],(e) SEM image of heterogeneous structured MoS2/MoO4[44],(f) SEM image of heterogeneous structured MoS2/BiVO4 composite[48],(g) TEM image of low layer MoS2/BiOBr hollow microsphere[49]
图5 (a)CdS/MoS2异质结构的SEM图[51],(b)MoS2/还原氧化石墨烯rGO复合物的TEM图[36],(c)Z-scheme结构的Ag3PO4/MoS2复合物示意图[76],(d)Ag3PO4/MoS2复合物TEM图[78]
Fig. 5 (a) SEM image of heterogeneous structured CdS/MoS2[51],(b) TEM image of MoS2/reduced graphene(rGO) composite[36],(c) schematic diagram of Ag3PO4/MoS2 composite in the Z-scheme structure[76],(d) TEM image of Ag3PO4/MoS2 composite[78]
图6 (a)叶片状MoS2对MO的降解,(b)叶片状MoS2的光催化稳定性[23]
Fig. 6 (a) Degradation of MO by leaf-shaped MoS2 and (b) photocatalytic stability of the leaf-shaped MoS2[23]
图7 不同复合材料对MB的降解效率:(a)MoS2/ZnO异质结[38](b)MoS2/SnO2纳米花[42],(c)MoS2/BiVO4纳米花[48],(d)MoS2/CdS异质结[51]
Fig. 7 Degradation efficiency to MB by different composites:(a) MoS2/ZnO heterojunction[38],(b) MoS2/SnO2[42],(c) MoS2/BiVO4[48], and(d) MoS2/CdS heterojunction[51]
图8 不同样品对RhB的降解效率:(a)MoS2/MoOx异质结纳米片对RhB的降解[21],(b)MoS2/BiOBr空心微球对RhB的降解[49],(c)TiO2/MoS2核-壳异质结对RhB的降解[26],(d)CdS/MoS2异质结对RhB的降解[51]
Fig. 8 Degradation efficiency to RhB by different composites:(a) MoS2/MoOx heterojunction nanosheets[21],(b) MoS2/BiOBr hollow microspheres[49],(c) TiO2/MoS2 core-shell heterojunctions[26], and (d) CdS/MoS2 heterojunctions[51]
图9 不同样品的产氢速率:(a)TiO2@MoS2异质结构[30],(b)MoS2纳米片包覆ZnO异质结构[39],(c)MoS2-CdS光催化剂[55],(d)MoS2纳米片/CdS纳米棒异质结构[90]
Fig. 9 Hydrogen production rates of different samples:(a) TiO2@MoS2 heterostructure[30],(b) MoS2 nanosheet-coated ZnO heterostructure[39],(c) MoS2-CdS photocatalyst[55], and(d) MoS2 nanosheet/CdS nanorod heterostructure[90]
图10 不同样品的产氢速率:(a)CuS2-TiO2[62],(b)MoS2/ZnIn2S4异质结构[66],(c)三元复合物Sm2O3@Co1-xS/MoS2催化剂[64],(d)Ag/MoS2纳米复合材料[92]
Fig. 10 Hydrogen production rates of different samples:(a) CuS2-TiO2[62],(b) MoS2/ZnIn2S4 heterostructure[66],(c) Sm2O3@Co1-xS/MoS2 photocatalyst[64], and(d) Ag/MoS2 nanocomposite[92]
图11 不同样品的产氢速率:(a)Au纳米粒子负载的MoS2/RGO复合物[75],(b)CQDs/MoS2复合物[71],(c)MoS2/空心HCNS球[82],(d)MoS2 QDs/UiO-66-NH2/G复合材料[85]
Fig. 11 Hydrogen production rates of different samples:(a) Au nanoparticle-supported MoS2/RGO composite[75],(b) CQDs/MoS2 composite [71],(c) MoS2/HCNS hollow sphere[82], and(d) MoS2 QDs/UiO-66-NH2/G composite[85]
图12 (a)MoS2沿(002)方向生长示意图[22],(b)Bi2O3/Bi2S3/MoS2异质结的降解机理图,(c)MoS2/MoOx异质结的降解机理图[44],(d)MoS2/Bi2MoO6复合物的降解机理图,(e)N-TiO2-x@MoS2核壳结构的降解机理图,(f)Ag3PO4/MoS2异质结的降解机理图,(g)MoS2/C3N4异质结构的降解机理图[80]
Fig. 12 (a) Schematic diagram of MoS2 grows along(002) direction[22],(b) degradation mechanism of Bi2O3/Bi2S3/MoS2 heterostructure,(c) degradation mechanism of MoS2/MoOx heterostructure[44],(d) degradation mechanism of MoS2/Bi2MoO6 composite,(e) degradation mechanism of N-TiO2-x@MoS2 nuclear shell structure,(f) degradation mechanism of Ag3PO4/MoS2 heterojunction,(g) degradation mechanism of MoS2/C3N4 heterojunction[80]
图13 不同样品的产氢机理:(a)MoS2在基片上垂直排列[32],(b)金属性MoS2与ZnO之间形成紧密界面[39],(c)形成空间电荷区[92],(d)表面等离子体共振效应机理[75],(e)TiO2导带电子转移到MoS2[30],(f)电子从MoS2导带转移到ZnO导带[41],(g)传统Ⅱ型异质结[31],(h)敏化作用[64],(i)Z-scheme结构[84]
Fig. 13 Hydrogen production mechanism of different samples:(a) vertical MoS2 on the substrate[32],(b) a compact interface between metallic MoS2 and ZnO[39],(c) space charge region[92],(d) surface plasmon resonance effect[75],(e) electrons transfer from TiO2to MoS2[30],(f) electrons transfer from MoS2to ZnO[41],(g) traditional type Ⅱ heterojunction[31],(h) sensitization effect[64],(i) Z-scheme structure[84]
[1]
Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G . Energ. Environ. Sci., 2014,7(9):2831. http://xlink.rsc.org/?DOI=C4EE01299B

doi: 10.1039/C4EE01299B     URL    
[2]
李圭白(Li G B), 李虹(Li H) . 锰化合物净水技术(Manganese Compound Water Purification Technology). 天津: 中国建筑工业出版社( Tianjin: China Construction Industry Press), 2005. 103.
[3]
Leng H, Loy J, Amin V, Weiss E A, Pelton M . ACS Energy Lett., 2016,1:9.
[4]
Ding J, Bu Y, Ou M, Yu Y, Zhong Q, Fan M . Appl. Catal. B: Env., 2017,202:314.
[5]
Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X . Nat. Nanotechnol., 2016,11:218. https://www.ncbi.nlm.nih.gov/pubmed/26936816

doi: 10.1038/nnano.2015.340     URL     pmid: 26936816
[6]
Feng B, Wu Z, Liu J, Zhu K, Li Z, Jin X, Huo Y D, Xi Q Y, Cong M Q, Liu P C, Gu Q L . Appl. Catal. B: Env., 2017,206:242.
[7]
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J . Adv. Mater., 2012,24:229. https://www.ncbi.nlm.nih.gov/pubmed/21972044

doi: 10.1002/adma.201102752     URL     pmid: 21972044
[8]
Frank S N, Bard A J . J Phys. Chem. C, 1977,81(15):1484.
[9]
Fujishima A, Honda K . Nature, 1972,238:37. https://www.ncbi.nlm.nih.gov/pubmed/12635268

doi: 10.1038/238037a0     URL     pmid: 12635268
[10]
Linsebigler A L, Lu G Q, Yates J T , Chem. Rev., 1995,95:735. https://pubs.acs.org/doi/abs/10.1021/cr00035a013

doi: 10.1021/cr00035a013     URL    
[11]
Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T , Nature, 1997,388:431.
[12]
Hashimoto K, Irie H , A. Fujishima, Jpn. J. Appl. Phys., 2005,44:8269.
[13]
Roy S C, Varghese O K, Paulose M, Grimes C A , ACS Nano, 2010,4:12.
[14]
Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J . Adv. Mater., 2012,24:229. https://www.ncbi.nlm.nih.gov/pubmed/21972044

doi: 10.1002/adma.201102752     URL     pmid: 21972044
[15]
Wang Q H, Kalantar-Zadeh , Kis A, Coleman J N, Strano M S . Nat. Nanotechnol., 2012,7(11):699. https://www.ncbi.nlm.nih.gov/pubmed/23132225

doi: 10.1038/nnano.2012.193     URL     pmid: 23132225
[16]
Zhang Z J, Zhang J, Xue Q J . J Phys. Chem. C, 1994,98(49):12973.
[17]
Benavente E, Santa Ana M, Mendizábal F, González G . Coord. Chem. Rev., 2002,224(1):87.
[18]
Moore S E, Lunsford J H . J. Cata., 1982,77(1):297.
[19]
Zhou Z, Lin Y, Zhang P, Ashalley E, Shafa M, Li H, Wu J, Wang Z M . Mater. Lett., 2014,131(1):122.
[20]
Wang D Z, Su B, Jiang Y, Li L, Boon K N, Wu Z Z, Liu F Y . Chem. Eng. J., 2017,330:102.
[21]
Zhong M, Wei Z M, Meng X, Wu F, Li J . Eur J. Inorg. Chem., 2014,20:3245.
[22]
Sheng B, Liu J, Li Z, Wang M, Zhu K, Qiu J, Wang J . Mater. Lett., 2015,144:153.
[23]
Liu W, Hu Q, Fei M, Hu J, Yi F, Tang H, Ye H, Miao S . J. Mol. Catal. A: Chem., 2014,395:322. https://www.ncbi.nlm.nih.gov/pubmed/1148239

doi: 10.1016/0005-2787(75)90203-8     URL     pmid: 1148239
[24]
Saha N, Sarkar A, Ghosh A B, Dutta A K, Bhadu G R, Paul P, Adhikary B . RSC Adv., 2015,5(108):88848.
[25]
Peng R, Liang L, Hood Z D, Boulesbaa A, Puretzky A, Ievlev A V, Come J, Ovchinnikova O S, Wang H, Ma C, Chi M F, Sumpter B G, Wu Z . ACS Catal., 2016,6:6723.
[26]
Wang C X, Lin H, Liu Z, Wu J, Xu Z, Zhang C . Part. Part. Syst. Char., 2016,33(4):221.
[27]
Zhou W J, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H . Small, 2013,9(1):140.
[28]
Liu H, Lv T, Zhu C, Su X, Zhu Z . J. Mol. Catal. A: Chem., 2015,396:136.
[29]
Cao L, Wang R, Wang D, Li X, Jia H . Mater. Lett., 2015,160:286.
[30]
Liu C B, Wang L L, Tang Y H, Luo S L, Liu Y, Zhang S, Zeng Y, Xua Y . Appl. Catal. B-Environ., 2015,164:1.
[31]
Paul K K, Sreekanthb N, Birojub R K, Narayananb T N, Giria P K . Sol. Energ. Mat. Sol. C, 2018,185:364.
[32]
He H Y, Lin J, Fu W, Wang X, Wang H, Zeng Q S, Gu Q, Li Y, Yan C, Beng K T, Xue C, Hu X, Pantelides S T, Zhou W, Liu Z . Adv. Energy Mater., 2016,6:1600464.
[33]
Zhang W P, Xiao X, Li Y, Zeng X, Zheng L, Wan C . RSC Adv., 2016,6:33705.
[34]
Song B, Wang L, Chen X, Du J, Xiong Y . Nano Res., 2015,8(1):175. https://www.ncbi.nlm.nih.gov/pubmed/23594476

doi: 10.1186/1556-276X-8-175     URL     pmid: 23594476
[35]
Fu H, Yu K, Li H, Li J, Guo B, Tan Y, Song C, Zhu Z . Dalton Trans., 2015,44:1664. https://www.ncbi.nlm.nih.gov/pubmed/25438064

doi: 10.1039/c4dt03035d     URL     pmid: 25438064
[36]
Liu X F, Xing Z, Zhang Y, Li Z, Wu X, Tan S, Yu X, Zhu Q, Zhou W. Appl. Catal. B: Env., 2017,201:119.
[37]
Tang X D, Wang Z, Huang W, Jing Q, Liu N . Mater Res Bull, 2018,105:126.
[38]
Tan Y H, Yu K, Li J Z, Fu H, Zhu Z Q . J. Appl. Phys., 2014,116(06):183.
[39]
Yuan Y J, Wang F, Hu B, Lu H W, Yu Z, Zou Z G . Dalton Trans., 2015,44:10997.
[40]
Zhang S B, Tang F, Liu J, Che W, Su H, Liu W, Huang Y, Jiang Y, Yao T, Liu Q, Wei S . Radiat. Phy. Chem., 2017,137:104.
[41]
Guo S H, Li X, Zhu J, Tong T, Wei B . Small, 2016,41:5692. https://www.ncbi.nlm.nih.gov/pubmed/27594534

doi: 10.1002/smll.201602122     URL     pmid: 27594534
[42]
Li J Z, Yu K, Tan Y, Fu H, Zhang Q, Cong W, Song C, Yin H, Zhu Z . Dalton. Trans., 2014,43(34):13136. https://www.ncbi.nlm.nih.gov/pubmed/25048830

doi: 10.1039/c4dt01436g     URL     pmid: 25048830
[43]
Vattikuti S V P, Chan B, Reddy C V, Ravikumar R V S S N . RSC Adv., 2015,5(105):86675.
[44]
Zhou G, Xu X, Yu J, Feng B, Zhang Y, Hu J, Zhou Y . CrystEngComm, 2014,16:9025.
[45]
Zhang J, Huang L, Jin H, Sun Y, Ma X, Zhang E, Wang H, Kong Z, Xi J, Ji Z . Mater. Res. Bull., 2017,85:140.
[46]
Chen Y J, Tian G, Shi Y, Xiao Y, Fu H . Appl. Catal. B: Env., 2015,164:40.
[47]
Li Z Z, Meng X, Zhang Z . Catalysis Today 2018,315:67.
[48]
Li H L, Yu K, Lei X, Guo B, Fu H, Zhu Z . J. Phys. Chem. C, 2015,119:22681.
[49]
Xia J X, Ge Y, Zhao D, Di J, Ji M, Yin S, Li H, Chen. R . CrystEngComm, 2015,17:3645.
[50]
Liu J H, Zhang L, Li N, Tian Q, Zhou J, Sun Y . J. Mater. Chem. A, 2014,3(2):706.
[51]
Min Y L, He G Q, Xu Q J, Chen Y C . J. Mater. Chem. A, 2014,2:2578.
[52]
Wang C X, Lin H, Xu Z, Cheng H, Zhang C . RSC Adv., 2015,5:15621.
[53]
Zhang S W, Yang H, Gao H, Cao R, Huang J, Xu X. ACS Appl . Mater. Interfaces, 2017,9:23635. https://www.ncbi.nlm.nih.gov/pubmed/28608669

doi: 10.1021/acsami.7b03673     URL     pmid: 28608669
[54]
Xu J, Cao X . Biochem. Eng. J., 2015,260:642.
[55]
Zhou X Z, Huang J, Zhang H, Sun H, Tu W . Inter. J. Hydrogen Energ., 2016,41:14758. https://linkinghub.elsevier.com/retrieve/pii/S0360319916318961

doi: 10.1016/j.ijhydene.2016.06.190     URL    
[56]
Xiong J H, Liu Y, Wang D, Liang S, Wu W, Wu L . J. Mater. Chem. A, 2015,3:12631.
[57]
Kumar D P, Hong S, Reddy D A, Kim T K . J. Mater. Chem. A, 2016,4:18551.
[58]
Reddy D A, Park H, Hong S, Kumar D P, Kim T K . J. Mater. Chem. A, 2017, 5: 6981.1
[59]
Iqbal S, Pan Z, Zhou K . Nanoscale, 2017,9:6638. https://www.ncbi.nlm.nih.gov/pubmed/28497825

doi: 10.1039/c7nr01705g     URL     pmid: 28497825
[60]
Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L . Small, 2015,11(41):5556. https://www.ncbi.nlm.nih.gov/pubmed/26332270

doi: 10.1002/smll.201501822     URL     pmid: 26332270
[61]
Meng N N, Zhou Y, Nie W, Song L, Chen P . J. Nanopart. Res., 2015,17:300.
[62]
Zhang X J, Guo Y, Tian J, Sun B, Liang Z, Xu X, Cui H . Appl. Cat. B-Environ., 2018,232:355.
[63]
Yu X L, Du R, Li B, Zhang Y, Liu H, Qu J, An X . Appl. Cat. B-Environ., 2016,182:504.
[64]
Yu H, Xu J, Guo H, Li Y, Liu Z, Jin Z . RSC Adv., 2017,7:56417.
[65]
Li W, Lin Z, Yang G . Nanoscale, 2017,9:18290. https://www.ncbi.nlm.nih.gov/pubmed/29140396

doi: 10.1039/c7nr06755k     URL     pmid: 29140396
[66]
Zhang Z Z, Huang L, Zhang J, Wang F, Xie Y, Shang X, Gu Y, Zhao H, Wang X . Appl Cat B-Environ., 2018,233:112.
[67]
Chai B, Liu C, Wang C, Yan J, Ren Z. Chinese J . Catal., 2017,38:2067.
[68]
Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radiman S, Hamid M A A . Catal. Sci. Technol., 2015,5:4133.
[69]
Hu C Y, Zheng S, Lian C, Chen F, Lu T, Hu Q, Dou S, Zhang R, Guan C . J. Mol. Catal. A: Chem., 2015,396:128.
[70]
Song W J, Nie T, Lai W, Yang W, Jiang X . CrystEngComm, 2018,18(20):4069.
[71]
Zhao S Y, Li C, Wang L, Liu N, Qiao S, Liu B, Huang H, Liu Y, Kang Z . Carbon, 2016,99:599.
[72]
Zhang L, Sun L, Liu S, Huang Y, Xu K, Ma F . RSC Adv., 2016,6:60318.
[73]
Li J, Liu X, Pan L, Qin W, Chen T, Sun Z . RSC Adv., 2014,4:9647.
[74]
Ding Y, Zhou Y, Nie W, Chen P . Appl. Surf. Sci., 2015,357:1606. https://linkinghub.elsevier.com/retrieve/pii/S0169433215024277

doi: 10.1016/j.apsusc.2015.10.030     URL    
[75]
Yu X, Shi J, Wang L, Wang W, Bian J, Feng L, Li C . Mater. Lett., 2016,182:125.
[76]
Zhu C S, Zhang L, Jiang B, Zheng J, Hu P, Li S, Wu M, Wu W . Appl. Surf. Sci., 2016,377:99.
[77]
Wang P F, Shi P, Hong Y, Zhou X, Yao W . Mater. Res. Bull., 2015,26:24.
[78]
Song Y H, Lei Y, Xu H, Wang C, Yan J, Zhao H, Xu Y, Xia J, Yin S, Li H . Dalton Trans., 2015,44(7):3057. https://www.ncbi.nlm.nih.gov/pubmed/25567674

doi: 10.1039/c4dt03242j     URL     pmid: 25567674
[79]
Wang L, Chai Y, Ren J, Ding J, Liu Q, Dai W L . Dalton Trans., 2015,44(33):14625. https://www.ncbi.nlm.nih.gov/pubmed/26212501

doi: 10.1039/c5dt01961c     URL     pmid: 26212501
[80]
Li Q, Zhang N, Yang Y, Wang G, Ng D H . Langmuir, 2014,30:8965. https://www.ncbi.nlm.nih.gov/pubmed/25017627

doi: 10.1021/la502033t     URL     pmid: 25017627
[81]
Peng W C, Li X Y . Catal. Commun., 2014,49(5):63.
[82]
Zheng D D, Zhang G, Hou Y, Wang X . Appl. Cat. A-Gener., 2016,521:2.
[83]
Li M L, Zhang L X, Fan X Q, Wu M Y, Du Y Y, Wang M, Kong Q L, Zhang L L, Shi J L . Appl. Cata. B-Environ., 2016,190:36.
[84]
Liu Y Z, Zhang H, Ke J, Zhang J, Tian W, Xu X, Duan X, Sun H, Tade M O, Wang S . Appl. Cata. B-Environ., 2018,228:64.
[85]
Hao X Q, Jin Z, Yang H, Lu G, Bi Y . Appl. Cat. B-Environ., 2017,210:45.
[86]
Zhang W, Xiao X, Zheng L, Wan C . Appl. Surf. Sci., 2015,93:358.
[87]
Cravanzola S, Cesano F, Magnacca G, Zecchina A, Scarano D . RSC Adv., 2016,6(64):59001.
[88]
Peng W C, Wang X, Li X Y . Nanoscale, 2014,6:8311. https://www.ncbi.nlm.nih.gov/pubmed/24933179

doi: 10.1039/c4nr01654h     URL     pmid: 24933179
[89]
Awasthi G P, Adhikari S P, Ko S, Han J K, Chan H P, Kim C S . J. Alloys. Compd., 2016,682:208.
[90]
Zhang X H, Li N, Wu J, Zheng Y Z, Tao X . Appl. Cat. B-Environ., 2018,229:227.
[91]
Yuan Y J, Lia Z, Wu S, Chen D, Yang L X, Cao D, Tu W G, Yu Z T, Zou Z G . Chem. Eng. J., 2018,350:335. https://linkinghub.elsevier.com/retrieve/pii/S1385894718309951

doi: 10.1016/j.cej.2018.05.172     URL    
[92]
Cheah A J, Chiu W S, Khiew P S, Nakajima H, Saisopa T, Songsiriritthigul P, Radimane S, Hamide M A A . Catal. Sci. Technol., 2015,15(5):4133.
[93]
Linsebigler A L, Lu G, Yates J T . Chem. Rev., 1995,95(3):735.
[94]
Ke J, Liu J, Sun H, Zhang H, Duan X, Liang P, Li X, Tade , M , Liu S, Wang S . Appl. Catal. B: Env., 2017,200:47.
[95]
Hou Y, Liu J, Li Z, Wu Z, Zhu K, Xi Q, Zhuang J, Chen J, Qian G, Cong M . Mater. Lett., 2018,218:110.
[96]
Liu C, Kong D, Hsu P C, Yuan H, Lee H W, Liu Y, Wang H, Wang S, Yan K, Lin D, Maraccini P A, Parker K M, Boehm A B, Cui Y . Nature Nanotech., 2016,11(12):1098.
[97]
Liu Z, Wang X, Qiao P, Tian Y, Li H, Yang J . J. Mater. Sci: Mater. Electron., 2015,26:7153.
[1] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[2] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[3] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[4] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[5] 郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 半导体光催化分解水的析氢效率研究[J]. 化学进展, 2020, 32(1): 46-54.
[6] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[7] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[8] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[9] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[10] 解英娟, 吴志娇, 张晓, 马佩军, 朴玲钰. 混晶TiO2光催化剂的制备及机理研究[J]. 化学进展, 2014, 26(07): 1120-1131.
[11] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[12] 杨昌军, 彭天右, 邓克俭, 昝菱. 固相光催化降解废弃塑料[J]. 化学进展, 2011, 23(5): 874-879.
[13] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.
[14] 张君涛,张国利,冯霄. 乙烯齐聚制α-烯烃镍系催化剂[J]. 化学进展, 2008, 20(0708): 1032-1036.
[15] 杨缜. 有机介质中酶催化的基本原理[J]. 化学进展, 2005, 17(05): 924-930.