English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1120-1131 DOI: 10.7536/PC140124 前一篇   后一篇

• 综述与评论 •

混晶TiO2光催化剂的制备及机理研究

解英娟1,2, 吴志娇1, 张晓3, 马佩军4, 朴玲钰*1   

  1. 1. 国家纳米科学中心 中国科学院纳米标准与检测重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049;
    3. 北京交通大学理学院 北京 100044;
    4. 北京化工大学化学工程学院 北京 100029
  • 收稿日期:2014-01-01 修回日期:2014-04-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 朴玲钰 E-mail:piaoly@nanoctr.cn
  • 基金资助:

    科技部基础性工作专项(No.2011FY130104),科技部国家科技支撑计划项目(No.2011BAK15B05)和国家重点基础研究发展计划(973)项目(No.2011CB932802)资助

Synthesis and Photocatalytic Mechanisms of the Mixed-Phase TiO2 Photocatalysts

Xie Yingjuan1,2, Wu Zhijiao1, Zhang Xiao3, Ma Peijun4, Piao Lingyu*1   

  1. 1. Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School of Science, Beijing Jiaotong University, Beijing 100044, China;
    4. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2014-01-01 Revised:2014-04-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the Ministry of Science and Technology of China (No. 2011FY130104), the National Science and Technology Pillar Program (No. 2011BAK15B05), and the National Basic Research Program of China (973 Program) (No. 2011CB932802)

本文总结了混晶TiO2光催化剂的各种制备方法,并将其分为两大类:一类是原位生成混晶,如水热法、溶剂热法、溶胶-凝胶法、微乳液-水热联用方法等;另一类是对两种晶型TiO2材料进行物理混合或对锐钛矿进行高温煅烧,如溶剂混合-煅烧法、高温煅烧法等。其中,后者操作简单易行、对设备要求不高,但获得的混晶TiO2易产生硬团聚,严重影响其光催化性能;在实际应用中前者制备的TiO2材料更具优势。同时,本文还对混晶TiO2光催化机理的研究历程进行了总结,并对其中存在的争议进行了评述。最后,展望了混晶TiO2光催化剂在环境和能源领域中的应用。

This review summarizes the preparation methods of mixed-phase TiO2 photocatalysts. Two main lines of fabrication have been followed: one is preparation of mixed-phase TiO2 in situ (e. g. hydrothermal method, solvothermal method, sol-gel method and microemulsion-mediated hydrothermal method, etc.), and the other is physical mixing of different phases of TiO2 or calcinations under high temperature (e. g. solvent mixing and calcination treatment, calcination under high temperature, etc.). The latter has fewer requirements on the equipments, but the produced TiO2 nanoparticles tend to be aggregates, which affects the photocatalytic performance of TiO2 materials seriously. The former has more advantages in practical applications. At the same time, this review summarizes and remarks the researches on photocatalytic mechanisms of the mixed-phase TiO2. Furthermore, the applications of the mixed-phase TiO2 photocatalysts in environmental and energy fields are also prospected.

Contents
1 Introduction
2 Synthesis of the mixed-phase TiO2 photocatalysts
2.1 Phases of TiO2
2.2 Methods of preparing the mixed-phase TiO2 photocatalysts and their influencing factors
3 Mechanisms of the enhanced photocatalytic activities by the mixed-phase TiO2 photocatalysts
4 Conclusion and outlook

中图分类号: 

()

[1] Fujishima A, Honda K. Nature, 1972, 238: 37.
[2] Carey J H, Lawrence J, Tosine H M. Bull. Environ. Contam. Toxicol., 1976, 16 (6): 697.
[3] Habisreutinger S N, Mende L S, Stolarczyk J K. Angew. Chem. Int. Ed., 2013, 52: 7372.
[4] Hu K, Robson K C D, Johansson P G, Berlinguette C P, Meyer G J. J. Am. Chem. Soc., 2012, 134: 8352.
[5] Guo Q, Xu C B, Ren Z F, Yang W S, Ma Z B, Dai D X, Fan H J, Minton T K, Yang X M. J. Am. Chem. Soc., 2012, 134: 13366.
[6] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S, Park N G, Kim K, Lee W I. Adv. Mater., 2009, 21: 3668.
[7] Liu S S, Li Q, Hou C C, Feng X D, Guan Z S. J. Alloys Compd., 2013, 575: 128.
[8] Zhu S L, Xie G Q, Yang X J, Cui Z D. Mater. Res. Bull., 2013, 48: 1961.
[9] Beuvier T, Plouet M R, Granvalet M M L, Brousse T, Crosnier O, Brohan L. Inorg. Chem., 2010, 49: 8457.
[10] Xin X K, Scheiner M, Ye M D, Lin Z Q. Langmuir, 2011, 27: 14594.
[11] Hosono E, Fujihara S, Imai H, Honma I, Masaki I, Zhou H S. ACS Nano, 2007, 1 (4): 273.
[12] Sinha A K, Jana S, Pande S, Sarkar S, Pradhan M, Basu M, Saha S, Pal A, Pal T. CrystEngComm, 2009, 11: 1210.
[13] Cheng Q Q, Cao Y, Yang L, Zhang P P, Wang K, Wang H J. Mater. Res. Bull., 2011, 46: 372.
[14] Wang Y W, Zhang L Z, Deng K J, Chen X Y, Zou Z G. J. Phys. Chem. C, 2007, 111: 2709.
[15] Wei J P, Yao J F, Zhang X Y, Zhu W, Wang H T, Rhodes M J. Mater. Lett., 2007, 61: 4610.
[16] Hu Y H. Angew. Chem. Int. Ed., 2012, 51: 12410.
[17] Oh J K, Lee J K, Kim H S, Han S B, Park K W. Chem. Mater., 2010, 22: 1114.
[18] Ye M D, Liu H Y, Lin C J, Lin Z Q. Small, 2013, 9(2): 312.
[19] Si P, Ding S J, Yuan J, Lou X W, Kim D H. ACS Nano, 2011, 5 (9): 7617.
[20] Li Y J, Yan X, Yan W F, Lai X Y, Li N, Chi Y, Wei Y J, Li X T. Chem. Eng. J., 2013, 232: 356.
[21] Etgar L, Gao P, Xue Z S, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M. J. Am. Chem. Soc., 2012, 134: 17396.
[22] Guo W X, Xu C, Wang X, Wang S H, Pan C F, Lin C J, Wang Z L. J. Am. Chem. Soc., 2012, 134: 4437.
[23] Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134: 7874.
[24] So S, Lee K, Schmuki P. J. Am. Chem. Soc., 2012, 134: 11316.
[25] Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J. Am. Chem. Soc., 2012, 134: 11276.
[26] Chen C Q, Li P, Wang G Z, Yu Y, Duan F F, Chen C Y, Song W G, Qin Y, Knez M. Angew. Chem. Int. Ed., 2013, 52: 9196.
[27] Hoang S, Berglund S P, Hahn N T, Bard A J, Mullins C B. J. Am. Chem. Soc., 2012, 134: 3659.
[28] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv. Mater., 2012, 24: 2310.
[29] Zuo F, Bozhilov K, Dillon R J, Wang L, Smith P, Zhao X, Bardeen C, Feng P Y. Angew. Chem. Int. Ed., 2012, 51: 6223.
[30] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J. Am. Chem. Soc., 2010, 132: 11856.
[31] Cai M L, Pan X, Liu W Q, Sheng J, Fang X Q, Zhang C N, Huo Z P, Tian H J, Xiao S F, Dai S Y. J. Mater. Chem. A, 2013, 1: 4885.
[32] Lianga M S, Khaw C C, Liu C C, Chin S P, Wang J, Li H. Ceram. Int., 2013, 39: 1519.
[33] Kim H, Hwanga Y H, Cho G, Kim D, Lim N, Pyo M. Electrochim. Acta, 2011, 56: 9476.
[34] Zhang C N, Huang Y, Chen S H, Tian H J, Mo L, Hu L H, Huo Z P, Kong F T, Ma Y W, Dai S Y. J. Phys. Chem. C, 2012, 116: 19807.
[35] Bae E G, Kim H, Hwang Y H, Sohn K S, Pyo M. J. Mater. Chem., 2012, 22: 551.
[36] Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chena H B, Lin C J. Electrochim. Acta, 2010, 55: 7211.
[37] Ismail A A. Micropor. Mesopor. Mater., 2012, 149: 69.
[38] Chen Y, Tang Y H, Luo S L, Liu C B, Li Y. J. Alloys Compd., 2013, 578: 242.
[39] Selvam K, Swaminathan M. Catal. Commun., 2011, 12: 389.
[40] Wang Y, Feng C X, Zhang M, Yang J J, Zhang Z J. Appl. Catal. B: Environ., 2010, 100: 84.
[41] Feng C X, Wang Y, Zhang J W, Yu L G, Li D L, Yang J J, Zhang Z J. Appl. Catal. B: Environ., 2012, 113/114: 61.
[42] Charanpahari A, Umarea S S, Gokhaleb S P, Sudarsan V, Sreedhar B, Sasikala R. Appl. Catal. A: Gen., 2012, 443/444: 96.
[43] Tian B Z, Li C Z, Gu F, Jiang H B. Catal. Commun., 2009, 10: 925.
[44] Zhang P, Shao C L, Li X H, Zhang M Y, Zhang X, Sun Y Y, Liu Y C. J. Hazard. Mater., 2012, 237/238: 331.
[45] Zhang Z H, Yuan Y, Liang L H, Cheng Y X, Shi G Y, Jin L T. J. Hazard. Mater., 2008, 158: 517.
[46] Sohn J R, Lim J S. Catal. Lett., 2006, 108: 1.
[47] Yang M, Men Y, Li S L, Chen G W. Appl. Catal. A: Gen., 2012, 433/434: 26.
[48] Su R, Bechstein R, S L, Vang R T, Sillassen M, Esbjörnsson B, Palmqvist A, Besenbacher F. J. Phys. Chem. C, 2011, 115: 24287.
[49] Bojinova A, Kralchevska R, Poulios I, Dushkin C. Mater. Chem. Phys., 2007, 106: 187.
[50] Harum D, Agrios A, Gray K, Rajh T, Thurnauer M. J. Phys. Chem. B, 2003, 107: 4545.
[51] Scotti R, Bellobono I R, Canevali C, Cannas C, Catti M, D'Arienzo M, Musinu A, Polizzi S, Sommariva M, Testino A, Morazzoni F. Chem. Mater., 2008, 20: 4051.
[52] Puddu V, Choi H, Dionysiou D D, Puma G L. Appl. Catal. B: Environ., 2010, 94: 211.
[53] Zheng R B, Meng X W, Tang F Q. Appl. Surf. Sci., 2009, 255: 5989.
[54] Jiao Y C, Chen F, Zhao B, Yang H Y, Zhang J L. Colloids Surf. A: Physicochem. Eng. Aspects, 2012, 402: 66.
[55] Paola A D, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L. Colloids Surf. A: Physicochem. Eng. Aspects, 2008, 317: 366.
[56] Li W, Liu C, Zhou Y X, Bai Y, Feng X, Yang Z H, Lu L H, Lu X H, Chan K Y. J. Phys. Chem. C, 2008, 112: 20539.
[57] Deng Q X, Wei M D, Ding X K, Jiang L L, Ye B H, Wei K M. Catal. Commun., 2008, 3657.
[58] Lin H F, Li L P, Zhao M L, Huang X S, Chen X M, Li G S, Yu R C. J. Am. Chem. Soc., 2012, 134(20): 8328.
[59] Zhang H Z, Banfield J F. J. Phys. Chem. B, 2000, 104: 3481.
[60] Tay Q L, Liu X F, Tang Y X, Jiang Z L, Sum T C, Chen Z. J. Phys. Chem. C, 2013, 117: 14973.
[61] 刘守新(Liu S X), 刘鸿(Liu H). 光催化及光电催化基础与应用(Foundation and Application of Photocatalysis and Photoelectrocatalysis). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2006. 44.
[62] Khataee A R, Kasiri M B. J. Mol. Catal. A: Chem., 2010, 328: 8.
[63] Jung K Y, Park S B, Jang H D. Catal. Commun., 2004, 5: 491.
[64] Zhang L, Ding Q Q, Zhou Y. Cryst. Res. Technol., 2011, 46: 1202.
[65] Wu J M, Song X M, Ma L Y, Wei X D. J. Cryst. Growth, 2011, 319: 57.
[66] Yin H B, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S. J. Mater. Chem., 2001, 11: 1694.
[67] Ng J W, Wang X P, Sun D D. Appl. Catal. B: Environ., 2011, 110: 260.
[68] Ovenstone J, Yanagisawa K. Chem. Mater., 1999, 11: 2770.
[69] Li G H, Ciston S, Saponjic Z V, Chen L, Dimitrijevic N M, Rajh T, Gray K A. J. Catal., 2008, 253: 105.
[70] Fehsea M, Fischer F, Tessier C, Stievano L, Monconduit L. J. Power Sources, 2013, 231: 23.
[71] Zhang Y Y, Chen J Z, Li X J. Catal. Lett., 2010, 139: 129.
[72] Shen X J, Tian B Z, Zhang J L. Catal. Today, 2013, 201: 151.
[73] Li G H, Gray K A. Chem. Mater., 2007, 19: 1143.
[74] Lei S, Duan W. J. Environ. Sci., 2008, 20: 1263.
[75] Yan M C, Chen F, Zhang J L, Anpo M. J. Phys. Chem. B, 2005, 109: 8673.
[76] Shen X J, Zhang J L, Tian B Z. J. Hazard. Mater., 2011, 192: 651.
[77] Zachariah A, Baiju K V, Shukla S, Deepa K S, James J, Warrier K G K. J. Phys. Chem. C, 2008, 112: 11345.
[78] Liu Z Y, Zhang X T, Nishimoto S, Jin M, Tryk D A, Murakami T, Fujishima A. Langmuir, 2007, 23: 10916.
[79] Nair R G, Paul S, Samdarshi S K. Sol. Energy Mater. Sol. Cells, 2011, 95: 1901.
[80] Gouma P I, Mills M J. J. Am. Ceram. Soc., 2001, 84: 619.
[81] Zhang J, Li M J, Feng Z C, Chen J, Li C. J. Phys. Chem. B, 2006, 110: 927.
[82] Chan C K, Porter J F, Li Y G, Wei G, Chan C M. J. Am. Ceram. Soc., 1999, 82: 566.
[83] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21:2285.
[84] Hsu Y C, Lin H C, Chen C H, Liao Y T, Yang C M. J. Solid State Chem., 2010, 183: 1917.
[85] Bickley R I, Gonzalezcarreno T, Lees J S, Palmisano L, Tilley R J D. J. Solid State Chem., 1991, 92: 178.
[86] Deskins N A, Kerisit S, Rosso K M, Dupuis M. J. Phys. Chem. C, 2007, 111: 9290.
[87] Deák P, Aradi B, Frauenheim T. J. Phys. Chem. C, 2011, 115: 3443.
[88] Scanlon D O, Dunnill C W, Buckeridge J, Shevlin S A, Logsdail A J, Woodley S M, Catlow C R A, Powell M J, Palgrave R G, Parkin I P, Watson G W, Keal T W, Sherwood P, Walsh A, Sokol A A. Nat. Mater., 2013, 7: 1.
[89] Datye A K, Riegel G, Bolton J R, Huang M, Prairie M R. J. Solid State Chem., 1995, 115: 236.
[90] Zhang Z B, Wang C C, Zakaria R, Ying J Y. J. Phys. Chem. B, 1998, 102: 10871.
[91] Ohno T, Sarukawa K, Tokieda K, Matsumura M. J. Catal., 2001, 203: 82.
[92] Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S. Angew. Chem. Int. Ed., 2002, 41: 2811.
[93] Li G H, Gray K A. Chem. Phys., 2007, 339: 173.
[94] Sun B, Vorontsov A V, Smirniotis P G. Langmuir, 2003, 19: 3151.
[95] Sun B, Smirniotis P G. Catal. Today, 2003, 88: 49.
[96] Liu B T, Peng L L. J. Alloys Compd., 2013, 571: 145.
[97] Li G, Chen L, Graham M E, Gray K A. J. Mol. Catal. A: Chem., 2007, 275: 30.
[98] Wang C Y, Pagel R, Dohrmann J K, Bahnemann D W. C. R. Chim., 2006, 9: 761.

[1] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[2] 赵玉坤, 汪园园, 籍宏伟, 马万红, 陈春城*, 赵进才*. 多溴联苯醚的光催化还原脱溴[J]. 化学进展, 2017, 29(9): 911-918.
[3] 张贺, 张驰, 宋晔. 阳极氧化钛纳米管阵列膜可控制备[J]. 化学进展, 2016, 28(6): 773-783.
[4] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[5] 张凌峰, 胡忠攀, 刘歆颖, 袁忠勇. TiO2基光解水析氢非贵金属共催化剂的研究[J]. 化学进展, 2016, 28(10): 1474-1488.
[6] 张晓东, 杨阳, 李红欣, 邹学军, 王玉新. 非TiO2光催化剂去除气态VOCs[J]. 化学进展, 2016, 28(10): 1550-1559.
[7] 金超, 秦瑶, 杨金虎. 新型非TiO2金半导体光催化剂[J]. 化学进展, 2014, 26(0203): 225-233.
[8] 胡金林, 杨其浩, 陈静, 王太亚, 林鹤, 钱海生. 介孔二氧化钛功能纳米材料的合成与应用[J]. 化学进展, 2013, 25(12): 2080-2092.
[9] 王亚军, 姜丽娟, 冯长根. Cr(Ⅵ)光催化还原[J]. 化学进展, 2013, 25(12): 1999-2010.
[10] 王会香, 姜东, 吴东, 李德宝, 孙予罕 . TiO2光催化还原CO2[J]. 化学进展, 2012, 24(11): 2116-2123.
[11] 林原, 王尚华, 付年庆, 张敬波, 周晓文, 肖绪瑞. 柔性染料敏化太阳电池的制备和性能研究[J]. 化学进展, 2011, 23(0203): 548-556.
[12] 黄浪欢 王后锦 刘应亮 焦自斌 邵子倍. TiO2与碳纳米管的复合及光催化协同作用*[J]. 化学进展, 2010, 22(05): 867-876.
[13] 盛国栋 李家星 王所伟 王祥科. 提高TiO2可见光催化性能的改性方法[J]. 化学进展, 2009, 21(12): 2492-2504.
[14] 孙剑 李晓辉 刘守新. 吸附—光催化联用去除室内挥发性有机物*[J]. 化学进展, 2009, 21(10): 2067-2076.
[15] 陈国华,赵峰鸣. 阳极氧化法制备TiO2多孔薄膜*[J]. 化学进展, 2009, 21(01): 121-127.