English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1619-1632 DOI: 10.7536/PC140452 前一篇   后一篇

• 综述与评论 •

离子掺杂氧化锌光催化纳米功能材料的制备及其应用

殷巧巧, 乔儒*, 童国秀   

  1. 浙江师范大学化学与生命科学学院 金华 321004
  • 收稿日期:2014-04-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 乔儒 E-mail:qiaoru@zjnu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21201151, 51102215)和教育部留学回国人员科研启动基金(No.[2011]1568)资助

Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials

Yin Qiaoqiao, Qiao Ru*, Tong Guoxiu   

  1. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
  • Received:2014-04-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21201151, 51102215) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No. [2011] 1568)

氧化锌是一种氧化还原电位高、激子结合能大(~60 meV)、物理和化学稳定性较好、廉价且无毒的半导体光催化剂。本文综述了掺杂氧化锌光催化剂的掺杂离子类型、制备方法、光催化效果及其作用机理。掺杂氧化锌的离子类型主要包括非金属离子单掺杂、金属离子(包括过渡金属离子和稀土金属离子)单掺杂和双离子共掺杂。离子掺杂后可在氧化锌晶格中引入更多的氧空穴或缺陷,为光致氧化反应提供更多的活性位点;或者引入杂质能级,扩大光吸收范围,增强可见光吸收能力。同时,掺杂的离子也可作为电子捕获中心,阻止光生电子-空穴对的复合,从而提高氧化锌光催化剂的性能。此外,文中还对掺杂氧化锌光催化剂在有机污染物降解、抗菌和光催化制氢等方面的应用进行了系统概述,并对其发展趋势作了展望。

Because of its high redox potential, large exciton binding energy (~60 meV), superior physical and chemical stability, inexpensiveness and nontoxicity, ZnO has become one of the most widely investigated semiconductor photocatalysts. In this review, different types of dopants, synthetic methods, photocatalysis and functional mechanism of the doped ZnO nanomaterials are summarized. The doping types include non-metal doping, metal doping (transition metal doping and rare earth metal doping) and co-doping approaches. Through this ion-doping method, oxygen vacancies or defects could be introduced into ZnO lattice, which provides more active sites for the photo-oxidation reaction. On the other hand, the ion-doping approach can produce impurity energy levels in ZnO band gap, leading to the expansion of its light responding region and enhancement of visible-light absorption ability. The doping ion can also work as an electron scavenger inhibiting recombination of electron-hole pairs, thus increases the photocatalytic activity of ZnO nanomaterials. Beside above-mentioned contents, research advances in applications of doped ZnO nanomaterials in fields of degradation of organic pollutants, antibacterial agents and photocatalytic hydrogen production are summarized. And also future developments of the doped nanomaterials are prospected.

Contents
1 Introduction
2 Dopant of ZnO nanomaterials
2.1 Non-metal doping
2.2 Metal doping
2.3 Co-doping
2.4 Self-doping
3 Photocatalytic mechanism
3.1 Theoretical studies of the doped ZnO
3.2 Photocatalytic mechanism of the doped ZnO
4 Application of the doped ZnO
4.1 Photocatalytic degradation
4.2 Photocatalytic antibacterial activity
4.3 Photocatalytic hydrogen production
5 Conclusion and outlook

中图分类号: 

()

[1] Drogui P, Daghrir R, Robert D. Ind. Eng. Chem. Res., 2013, 52: 3581.
[2] Kamat P V. J. Phys. Chem. C, 2012, 116: 11849.
[3] Mapa M, Gopinath C S. Chem. Mater., 2009, 21: 351.
[4] Palominos R A, Mondaca M A, Giraldo A, Penuela G, Moya P M, Mansilla H D. Catal. Today, 2009, 144: 100.
[5] Fu H G, Tian C G, Zhang Q, Wu A P, Jiang M J, Liang Z L, Jiang B J. Chem. Comm., 2012, 48: 2858.
[6] Duan X W, Wang G Z, Wang H Q, Wang Y Q, Shen C, Cai W P. CrystEngComm, 2010, 12: 2821.
[7] Cao X L, Zeng H B, Wang M, Xu X J, Fang M, Ji S L, Zhang L D. J. Phys. Chem. C, 2008, 112: 5267.
[8] Xu L P, Hu Y L, Pelligra C, Chen C H, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib L S. Chem. Mater., 2009, 21: 2875.
[9] Zhang L Y, Yin L W, Wang C X, Lun N, Qi Y X. ACS Appl. Mater. Interface, 2010, 2: 1769.
[10] Boppella R, Anjaneyulu K, Basak P, Manorama V S. J. Phys. Chem. C, 2013, 117: 4597.
[11] Zhai T, Xie S L, Zhao Y F, Sun X F, Lu X H, Yu M H, Xu M, Xiao F M, Tong Y X. CrystEngComm, 2012, 14: 1850.
[12] Deng Q, Duan X W, Ng H L D, Tang H B, Yang Y, Kong M G, Wu Z K, Cai W P, Wang G Z. ACS Appl. Mater. Interfaces, 2012, 4: 6030.
[13] He W W, Kim H K, Wamer G W, Melka D, Callahan H J, Yin J J. J. Am. Chem. Soc., 2014, 136: 750.
[14] Molinari A, Amadeli R, Antolini L, Maldotti A, Battioni P, Mansuy D. J. Mol. Catal. A, 2000, 158: 521.
[15] Bessekhouad Y, Robert D, Weber J V. Catal. Today, 2005, 101: 315.
[16] Wu W, Zhang S F, Xiao X H, Zhou J, Ren F, Sun L L, Jiang C Z. ACS Appl. Mater. Interfaces, 2012, 4: 3602.
[17] Singh S, Barick K C, Bahadur D. J. Mater. Chem. A, 2013, 1: 3325.
[18] Ekambarama S, Iikubo Y, Kudo A. J. Alloys Compd., 2007, 433: 237.
[19] Etacheri V, Roshan R, Kumar V. ACS Appl. Mater. Interfaces, 2012, 4: 2717.
[20] Zhou X M, Liu G, Yu J G, Fan W D. J. Mater. Chem., 2012, 22: 21337.
[21] Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Cryst. Growth Des., 2009, 9: 3278.
[22] Liu H R, Shao G X, Zhao J F, Zhang Z X, Zhang Y, Liang J, Liu X G, Jia H S, Xu B S. J. Phys. Chem. C, 2012, 116: 16182.
[23] Xiao Q, Zhang J, Xiao C, Tan X K. Mater. Sci. Eng. B, 2007, 142: 121.
[24] Xiao Q, Ouyang L L. J. Alloy Compd., 2009, 479: L4.
[25] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.
[26] Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris C R, Qian F, Zhang Z J, Li Y. Nano Lett., 2009, 9: 2331.
[27] Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515.
[28] Kim S, Park H, Nam G, Yoon H, Leem J Y. J. Sol-Gel Sci. Technol., 2013, 67: 580.
[29] Gao J H, Zhao Q, Sun Y H, Li G, Zhang J M, Yu D P. Nanoscale Res. Lett., 2011, 6: 45.
[30] Shen G Z, Cho J H, Yoo J K, Yi G C, Lee C J. J. Phys. Chem. B, 2005, 109: 5491.
[31] Choi Y J, Park H H. J. Mater. Chem. C, 2014, 2: 98.
[32] Qin H C, Li W Y, Xia Y J, He T. ACS Appl. Mater. Interfaces, 2011, 3: 3152.
[33] Bai H W, Liu Z Y, Sun D L. Chem. Asian J., 2012, 7: 1772.
[34] Sun S B, Chang X T, Li X J, Li Z J. Ceram. Int., 2013, 39: 5197.
[35] Zong X, Sun C H, Yu H, Chen Z G, Xing Z, Ye D L, Lu G Q, Li X Y, Wang L Z. J. Phys. Chem. C, 2013, 117: 4937.
[36] Yu Z B, Yin L C, Xie Y P, Liu G, Ma X L, Cheng H M. J. Colloid Interf. Sci., 2013, 400: 18.
[37] Liu S W, Li C, Yu J G, Xiang Q J. CrystEngComm, 2011, 13: 2533.
[38] Ouyang H B, Huang J F, Li C Y, Cao L Y, Fei J. Mater. Lett., 2013, 111: 217.
[39] Yu Q, Li H D, Wang Q L, Cheng S H, Li L A. Chem. Phys. Lett., 2012, 539/540: 74.
[40] Zhang Y, Wu L, Li H, Xu J, Han L, Wang B, Tuo Z, Xie E. J. Alloy. Compd., 2009, 473: 319.
[41] 傅希贤(Fu X X), 杨秋华(Yang Q H), 桑丽霞(Sang L X).高等学校化学学报 (Chem. J. Chin. Univ.), 2002, 23: 283.
[42] Wang C Y, Bettcher C, Bahnemann D W, Dohrmann J K. J. Mater. Chem., 2003, 13: 2322.
[43] Zhang Y Y, Ram M K, Stefanakos E K, Goswami D Y. Surf. Coat. Technol., 2013, 217: 119.
[44] Dong S H, Xu K J, Liu J C, Cui H W. Physic B, 2011, 406: 3609.
[45] Ba-Abbad M M, Kadhum H A A, Mohamad A B, Takriff M S, Sopian K. Chemosphere, 2013, 91: 1604.
[46] Mohana R, Krishnamoorthy K, Kim S J. Solid State Commun., 2012, 152: 375.
[47] Jongnavakit P, Amornpitoksuk P, Suwanboon S, Ndiegec N. Appl. Surf. Sci., 2012, 258: 8192.
[48] Carvalho H W P, Batista A P L, Hammer P, Ramalho T C. J. Hazard. Mater., 2010, 184: 273.
[49] Donkovaa B, Dimitrova D, Kostadinov M, Mitkova E, Mehandjiev D. Mater. Chem. Phys., 2010, 123: 563.
[50] Barick K C, Singh S, Aslam M, Bahadur D. Micropor. Mesopor. Mater., 2010, 134: 195.
[51] Kaneva N V, Dimitrov D T, Dushkin C D. Appl. Surf. Sci., 2011, 257: 8113.
[52] He R L, Hocking R K, Tsuzuki T. Mater. Chem. Phys., 2012, 132: 1035.
[53] Hagfeldt A, Gratzel M. Chem. Rev., 1995, 95: 49.
[54] Ullah R, Dutta J. J. Hazard. Mater., 2008, 156: 194.
[55] Zhao J, Wang L, Yan X Q, Yang Y, Lei Y, Zhou J, Huang Y H, Gu Y S, Zhang Y. Mater. Res. Bull., 2011, 46: 1207.
[56] Xu C, Cao L X, Su G, Liu W, Qu X F, Yu Y Q. J. Alloy. Compd., 2010, 497: 373.
[57] Mahmood M A, Baruah S, Dutta J. Mater. Chem. Phys., 2011, 130: 531.
[58] Lu Y C, Lin Y H, Xie T F, Shi S L, Wang D J, Fan H M. Nanoscale, 2012, 4: 6393.
[59] Cai X Y, Cai Y, Liu Y J, Li H, Zhang F. J. Phys. Chem. Solids, 2013, 74: 1196.
[60] Ranjit K T, Willner I, Bossmann S H, Braun A M. J. Catal., 2001, 204: 305.
[61] Ranjit K T, Willner I, Bossmann S H, Braun A M. Environ. Sci. Technol., 2001, 35: 1544.
[62] Geburt S, Stichtenoth D, Muller S, Dewald W, Ronning C, Wang J, Jiao Y, Rao Y Y, Hark S K, Li Q. J. Nanosci. Nanotechnol., 2008, 8: 244.
[63] Suwanboon S, Amornpitoksuk P, Sukolrat A, Muensit N. Ceram. Int., 2013, 39: 2811.
[64] Zhou Y, Lu S X, Xua W G. Environ. Prog. Sust. Energy, 2009, 28: 226.
[65] Saif M, Hafez H, Nabeel A I. Chemosphere, 2013, 90: 840.
[66] Yousefi M, Amiri M, Azimirad R, Moshfegh A Z. J. Electroanal. Chem., 2011, 661: 106.
[67] Khatamian M, Khandar A A, Divband B, Haghighi M, Ebrahimiasl S. J. Mol. Catal. A, 2012, 365: 120.
[68] Liang C H, Li F B, Liu C S, Lu J L, Wang X G. Dyes Pigments, 2008, 76: 477.
[69] Sin J C, Lam S M, Lee K T, Mohamed A R. J. Colloid Interface Sci., 2013, 401: 40.
[70] Sin J C, Lam S M, Lee K T, Mohamed A R. Ceram. Int., 2013, 39: 5833.
[71] Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Mater. Lett., 2013, 90: 83.
[72] Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Ceram. Int., 2013, 39: S563.
[73] Yayapao O, Thongtem T, Phuruangrat A, Thongtem S. J. Alloy. Compd., 2013, 576: 72.
[74] Wu Y, Xing M, Tian B, Zhang J, Chen F. Chem. Eng. J., 2010, 162: 710.
[75] Liu H, Wu Y, Zhang J. ACS Appl. Mater. Interface, 2011, 3: 1757.
[76] Wang P, Yap P, Lim T. Appl. Catal. A, 2011, 399: 252.
[77] Jia A, Liang X, Su Z, Zhu T, Liu S. J. Hazard. Mater., 2010, 178: 233.
[78] He T O, Guo X L, Zhang K, Feng Y M, Wang X D. RSC Adv., 2014, 4: 5880.
[79] Wu K P, Gu S L, Tang K, Ye J D, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R, Zheng Y D. J.Magn. Magn. Mater., 2012, 324: 1649.
[80] Wu K P, Gu S L, Tang K, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R, Zheng Y D. Physica B, 2012, 407: 2429.
[81] Dhiman P, Batoo K M, Kotnala R K, Chand J, Singh M. Appl. Surf. Sci., 2013, 287: 287.
[82] Cao H W, Lu P F, Cong Z X, Yu Z Y, Cai N M, Zhang X L, Gao T, Wang S M. Thin Solid Films, 2013, 548: 480.
[83] 傅天华(Fu T H), 高倩倩(Gao Q Q), 刘斐(Liu F), 代华均(Dai H J), 寇兴明(Kou X M). 催化学报(Chinese J. Catal.), 2010, 31: 797.
[84] Vignesh K, Rajarajan M, Suganthi A. J. Ind. Eng. Chem., 2014, 20: 3826.
[85] Zheng Z K, Huang B B, Meng X D, Wang J P, Wang S Y, Lou Z Z, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Comm., 2013, 49: 868.
[86] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J. Am. Chem. Soc., 2010, 132: 11856.
[87] Xing M, Zhang J, Chen F, Tian B. Chem. Commm., 2011, 47: 4947.
[88] Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y. ACS Appl. Mater. Interfaces, 2012, 4: 4024.
[89] Shinde S S, Bhosale C H, Rajpure K Y. J. Photochem. Photobio. B, 2012, 113: 70.
[90] Patil B A, Patil R K, Pardeshi K S. J. Solid State Chem., 2011, 184: 3273.
[91] Patil B A, Patil R K, Pardeshi K S. J. Hazard. Mater., 2010, 183: 315.
[92] Xie S F, Liu Y Y, Chen Z L, Chen X D, Wang X Y. RSC Adv., 2013, 3: 26080.
[93] Kochuveedu T S, Jang Y H, Jang Y J, Kim D H. J. Mater. Chem. A, 2013, 1: 898.
[94] Fu M, Li Y L, Wu S W, Lu P, Liu J, Dong F. Appl. Surf. Sci., 2011, 258: 1587.
[95] Wu C L, Shen L, Yu H G, Zhang Y C, Huang Q L. Mater. Lett., 2012, 74: 236.
[96] Xiao Q, Yao C. Mater. Chem. Phys., 2011, 130: 5.
[97] Yang Y F, Li Y G, Zhu L P, He H P, Hu L, Huang J Y, Hu F C, He B, Ye Z Z. Nanoscale, 2013, 5: 10461.
[98] Karunakaran C, Gomathisankar P, Manikandan G. Mater. Chem. Phys., 2010, 123: 585.
[99] Korake P V, Dhabbe R S, Kadam A N, Gaikwad Y B, Garadkar K M. J. Photochem. Photobio. B, 2014, 130: 11.
[100] Phuruangrat A, Yayapao O, Thongtemc T, Thongtema S. Superlattice. Microst., 2014, 67: 118.
[101] Sin J C, Lam S M, Lee K T, Mohamed A R. Ceram. Int., 2014, 40: 5431.
[102] Ökte A. N. Appl. Catal. A, 2014, 475: 27.
[103] Chavillon B, Cario L, Renaud A, Tessier F, Cheviré F, Boujtita M, Pellegrin Y, Blart E, Smeigh A, Hammarström L, Odobel F, Jobic S. J. Am. Chem. Soc., 2012, 134: 464.
[104] Herring P N. Panchakarla S L, El-Shall S M. Langmuir, 2014, 30: 2230.
[105] Lu Y B, Dai Y, Wei W, Zhu Y T, Huang B B. ChemPhysChem, 2013, 14: 3916.
[106] Geng B Y, Wang G Z, Jiang Z, Xie T, Sun S H, Meng G W, Zhang L D. Appl. Phys. Lett., 2003, 82: 4791.
[107] Zhang Z, Yi J B, Ding J, Wong L M, Seng H L, Wang S J, Tao J G, Li G P, Xing G Z, Sum T C, Huan C H A, Wu T. J. Phys. Chem. C, 2008, 112: 9579.
[108] Shi S B, Yang Y, Xu J P, Li L, Zhang X S, Hu G H, Dang Z M. J. Alloy. Compd., 2013, 576: 59.
[109] Wu C L, Zhang Y C, Huang Q L. Mater. Lett., 2014, 119: 104.
[110] Lu Y C, Lin Y H, Wang D J, Wang L L, Xie T F, Jiang T F. Nano Res., 2011, 4: 1144.
[111] Lu Y C, Lin Y H, Xie T F, Chen L P, Yi S S, Wang D J. ACS Appl. Mater. Interfaces, 2013, 5: 4017.
[112] Sina J C, Lama S M, Satoshi I, Leea K T, Mohamed R A. Appl. Catal. B, 2014, 148/149: 258.
[113] 曲敏丽(Qu M L), 姜万超(Jiang W C). 印染助剂(Textile Auxiliaries), 2004, 21: 45.
[114] Gu Z, Han Y, Pan F, Wang X, Weng D, Zhou S. Mater. Sci. Forum., 2009, 610/613: 229.
[115] Raghupathi K R, Koodali R T, Manna A C. Langmuir, 2011, 27: 4020.
[116] Dutta K R, Sharma K P, Bhargava R, Kumar N, Pandey C A. J. Phys. Chem. B, 2010, 114: 5594.
[117] Liang X X, Sun M X, Li L C, Qiao R, Chen K Y, Xiao Q S, Xu F. Dalton Trans., 2012, 41: 2804.
[118] Suwanboon S, Amornpitoksuk P, Bangrak P, Muensit N. Mater. Sci. Semicon. Proc., 2013, 16: 504.
[119] 温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21: 2285.
[120] Kanade K G, Kale B B, Baeg J O, Lee S M, Lee C W, Moon S J, Chang H. Mater. Chem. Phys., 2007, 102: 98.
[121] Bhirud P A, Sathaye D S, Waichal P R, Nikama K L, Kale B B. Green Chem., 2012, 14: 2790.
[122] Gomathisankar P, Hachisuka K, Katsumata H, Suzuki T, Funasaka K, Kaneco S. ACS Sustainable Chem. Eng., 2013, 1: 982.
[123] Yang K S, Dai Y, Huang B B. ChemPhysChem, 2009, 10: 2327.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[9] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[12] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[13] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[14] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[15] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.