English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1075-1085 DOI: 10.7536/PC190213 前一篇   后一篇

• •

生物质基分子水相催化加氢反应及多相催化剂

钱丽华, 蓝国钧, 刘晓艳, 叶清枫, 李瑛**()   

  1. 浙江工业大学工业催化研究所 杭州 310014
  • 收稿日期:2019-02-14 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 李瑛
  • 基金资助:
    浙江省自然科学基金项目(LY17B030010)

Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation

Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li**()   

  1. Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2019-02-14 Online:2019-08-15 Published:2019-05-30
  • Contact: Ying Li
  • About author:
  • Supported by:
    Natural Science Foundation of Zhejiang Province(LY17B030010)

生物质转化为平台分子,进一步转化成燃料和化学品是生物质利用的重要途径之一。本文总结了水相加氢反应及其催化剂的研究进展,指出了水相催化反应对催化剂的调控合成带来的挑战,如活性组分的流失,催化剂表面重构及毒化等。总结了水相催化加氢反应中高活性及高稳定性加氢催化剂的合成策略:如载体表面结构调控、炭的表面包覆、载体与金属活性组分之间相互作用的增强及新结构催化剂的设计合成等,指出了水相加氢反应的催化剂设计合成的发展方向,为生物质催化转化研究提供参考。

Transformation of the biomass into platform molecules and further conversion into fuel and chemicals is one of the important ways of biomass utilization. The research progress on aqueous-phase hydrogenation and highly active and stable catalysts for aqueous-phase catalytic reactions are summarized. The challenges of the heterogenous catalysts used in aqueous reaction such as the loss of active components, catalyst surface reconstruction, toxicity, etc., and the preparation strategy of highly active and stable catalysts, such as the surface reconstruction, surface carbon coating, enhancement of the interaction between the support and the metal active components, and new structure catalysts design are summarized. The further research direction on catalysts design for aqueous-phase hydrogenation reaction are discussed.

()
图1 水/烃(油)界面处模拟水分子的示意图。深灰色球:C原子,浅灰色:H原子,红色:O原子,虚线:氢键。透明矩形描绘了水和碳氢化合物之间的界面[14]
Fig. 1 Schematic illustration of the simulated water structure at a water/hydrocarbon(oil) interface. Color key: dark gray spheres=C, light gray=H, red=O. Dotted lines are hydrogen bonds. The transparent rectangle depicts the interface between water and the hydrocarbon[14]
图2 部分离解水在Ru(0001)上的扫描隧道显微镜(STM)图像:(a)145 K沉积后完好的水条带,(b)145 K退火30 min后部分游离的H2O-OH条带。DFT优化结构中,OH基团中的O原子用橙色标记[16]
Fig. 2 Partial dissociation of H2O on Ru(0001): STM images of(a) intact water stripes after deposition at 145 K and its transformation to(b) partially dissociated H2O-OH stripes after 30 min annealing at 145 K. In the DFT optimized structures shown, the OH group is highlighted by an orange O atom[16]
图3 丙酮和水共吸附在Ru(0001)上。丙酮与水形成氢键的吸附构型(0.18 eV), 深棕色球=C,粉红色=H,红色=O,浅棕色=Ru[22]
Fig. 3 Acetone and water co-adsorbed to Ru(0001). This adsorption configuration of acetone is stabilized by 0.18 eV through formation of a hydrogen bond(depicted with annotated line). Dark brown spheres=C, pink=H, red=O, light brown=Ru[22]
图4 三相反应中的传质示意图[27]
Fig. 4 Schematic of mass transfer in a three-phase reaction[27]
表1 水相加氢反应中各种催化剂的活性总结
Table 1 Summary of catalytic performance of various catalysts in aqueous phase hydrogenation
Type of catalyst Catalyst Substrate Reaction condition Conv./% ref
noble metals Ru-MC-g benzoic acid H2(4 MPa), 120 ℃, 2 h 94 35
Rh/H-Beta diphenyl ether H2(4 MPa), 120 ℃, 3 h 80 37
Pt/H-Beta diphenyl ether H2(4 MPa), 120 ℃, 3 h 64 37
Ru/H-Beta diphenyl ether H2(4 MPa), 120 ℃, 3 h 70 37
Ru/Al2O3 levulinic acid H2(2 MPa), 50 ℃, 1 h 22 49
Ir/CNT levulinic acid H2(2 MPa), 50 ℃, 1 h 96 49
Ru/CNT levulinic acid H2(2 MPa), 50 ℃, 1 h 65 47
Ru/C guaiacol H2(4 MPa), 250 ℃, 2 h 56 50
Rh/C guaiacol H2(4 MPa), 250 ℃, 2 h 15 50
Pt/C guaiacol H2(4 MPa), 250 ℃, 2 h 2 50
Pd/C guaiacol H2(4 MPa), 250 ℃, 2 h 0 50
Pd/C phenol H2(4 MPa), 250 ℃, 2 h 82 50
Ru/CNT cellobiose H2(5 MPa), 185 ℃, 3 h 88 51
metal oxides and metal composites 4%Rh-MoOx/SiO2(Mo/Rh=0.13) levulinic acid H2(6 MPa), 80 ℃, 6 h 100 38
4%Ir-MoOx/SiO2(Mo/Ir=0.13) levulinic acid H2(6 MPa), 80 ℃, 6 h 100 38
4%Ru-MoOx/SiO2(Mo/Ru=0.13) levulinic acid H2(6 MPa), 80 ℃, 6 h 100 38
4%Rh-MoOx/SiO2(Mo/Rh=0.13) lactic acid H2(6 MPa), 80 ℃, 6 h 78 38
Pt-ReOx/C sorbitol H2(6.21 MPa), 245 ℃, WHSV(2.92 h-1) 99 41
Pt-ReOx/Zr-P sorbitol H2(6.21 MPa), 160 ℃, WHSV(0.16 h-1) 92 42
Pd1Fe3/Zr-P sorbitol H2(6.21 MPa), 245 ℃, WHSV(2.92 h-1) 16 44
Pd/WOx/-Al2O3 guaiacol H2(7 MPa), 300 ℃, 150 min 100 52
non-noble metals Raney Ni levulinate esters H-donor(2-PrOH), room temperature, Ar, 2 h 87 40
20%Cu/ZrO2-OG(oxalate-gel) levulinic acid/
formic acid
formic acid, N2(1 MPa), 180 ℃, 5 h 60 41
5 wt%Ni-HAP levulinic acid H2(0.5 MPa), 70 ℃, 4 h 18 53
10%Ni/Al2O3 levulinic acid H2(3 MPa), 200 ℃, 3 h 29 54
7.9 mol%Co/AC vanillin/formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 6 45
Co@NC-700
(7.9 mol%Co)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 96 48
Fe@NC-700
(7.9 mol% Fe)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 10 48
Ni@NC-700
(7.9 mol% Ni)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 37 48
Cu@NC-700
(7.9 mol% Cu)
vanillin/ formic acid formic acid, N2(0.5 MPa), 180 ℃, 4 h 4 48
4Co/Al2O3(nCo/nAl=4) levulinic acid H2(5 MPa), 180 ℃, 3 h 6 55
图5 涂覆负载型金属催化剂的制备方法[67]
Fig. 5 A facile approach for coating supported metal catalysts[67]
图6 石墨炭/氧化物复合材料的制备方法,适用粉末和颗粒[68]
Fig. 6 Preparation of graphitic carbon/oxide composites that are applicable to powders as well as pellets[68]
图7 Ru-MC催化剂的制备示意图[72]
Fig. 7 Schematic illustration of the preparation process of Ru-MC catalyst[72]
图8 Co@NC-x催化剂的合成示意图[48]
Fig. 8 Schematic illustration of the synthesis of the Co@NC-x catalyst[48]
图9 中空壳核Co@C-N纳米反应器的合成示意图[73]
Fig. 9 Schematic illustration of the synthesis of hollow yolk-shell Co@C-N nanoreactors[73]
[1]
Dwivedi A D, Rai R K, Gupta K, Singh , S K . ChemCatChem, 2017,9:1930. http://doi.wiley.com/10.1002/cctc.201700056

doi: 10.1002/cctc.201700056     URL    
[2]
Wu K J, Wu Y L, Chen Y, Chen, H, Wang, J L, Yang M D . ChemSusChem, 2016,9:1355. https://www.ncbi.nlm.nih.gov/pubmed/27158985

doi: 10.1002/cssc.201600013     URL     pmid: 27158985
[3]
Michel C, Zaffran J, Ruppert A M, Matras-Michalska J, Jedrzejczyk M, Grams J, Sautet P . Chem. Commun., 2014,50:12450. https://www.ncbi.nlm.nih.gov/pubmed/24980805

doi: 10.1039/c4cc04401k     URL     pmid: 24980805
[4]
Li C J, Chen L . Chem. Soc. Rev., 2006,35:68. https://www.ncbi.nlm.nih.gov/pubmed/16365643

doi: 10.1039/b507207g     URL     pmid: 16365643
[5]
Tran H V, Doan H A, Chandler B D, Grabow L C . Curr. Opin. Chem. Eng., 2016,13:100. https://linkinghub.elsevier.com/retrieve/pii/S2211339816300521

doi: 10.1016/j.coche.2016.08.010     URL    
[6]
Niemeier J, Engel R V, Rose M . Green Chem., 2017,19:2839. http://xlink.rsc.org/?DOI=C7GC00422B

doi: 10.1039/C7GC00422B     URL    
[7]
Davies P R . Top. Catal., 2016,59:671. http://link.springer.com/10.1007/s11244-016-0539-5

doi: 10.1007/s11244-016-0539-5     URL    
[8]
Michel C, Gallezot P . ACS Catal., 2015,5:4130. https://pubs.acs.org/doi/10.1021/acscatal.5b00707

doi: 10.1021/acscatal.5b00707     URL    
[9]
Tan J J, Cui J L, Cui X J, Deng T S, Li X Q, Zhu Y L, Li Y W . ACS Catal., 2015,5:7379. https://pubs.acs.org/doi/10.1021/acscatal.5b02170

doi: 10.1021/acscatal.5b02170     URL    
[10]
Liu C, Zhang C, Liu K . Biomass Bioenerg., 2015,72:189. https://linkinghub.elsevier.com/retrieve/pii/S0961953414004929

doi: 10.1016/j.biombioe.2014.11.005     URL    
[11]
Li B, Li L, Zhao C . Green Chem., 2017,19:5412. http://xlink.rsc.org/?DOI=C7GC02414B

doi: 10.1039/C7GC02414B     URL    
[12]
Patel A J, Patrick Varilly P, Chandler D . J. Phys. Chem. B, 2010,114:1632. https://pubs.acs.org/doi/10.1021/jp909048f

doi: 10.1021/jp909048f     URL    
[13]
Zhang X, Sewell T E, Glatz B, Sarupria S, Getman R B . Catal. Today, 2017,285:57. https://linkinghub.elsevier.com/retrieve/pii/S0920586117300639

doi: 10.1016/j.cattod.2017.02.002     URL    
[14]
Strazdaite S, Versluis J, Bakker H J . J. Chem. Phys., 2015,143:084708. https://www.ncbi.nlm.nih.gov/pubmed/26328868

doi: 10.1063/1.4929905     URL     pmid: 26328868
[15]
Sádaba I, Granados M L, Riisager A, Taarning E . Green Chem., 2015,17:4133. http://xlink.rsc.org/?DOI=C5GC00804B

doi: 10.1039/C5GC00804B     URL    
[16]
Chang C R, Huang Z Q, Li J, . Wiley Interdiscip. Rev. Comput. Mol. Sci., 2016,6:679.
[17]
Zhu C, Kais S, Zeng X C, Francisco J S, Gladich I . J. Am. Chem. Soc., 2016,139:27. https://pubs.acs.org/doi/10.1021/jacs.6b10208

doi: 10.1021/jacs.6b10208     URL    
[18]
Struijk J, Dangremond M, Lucasderegt W J M, Scholten J J F . Appl. Catal. A, 1992,83:263. https://linkinghub.elsevier.com/retrieve/pii/0926860X9285039E

doi: 10.1016/0926-860X(92)85039-E     URL    
[19]
Struijk J, Moene R, Vanderkamp T, Scholten J J F . Appl. Catal. A, 1992,8:77.
[20]
Xie S H, Qiao M H, Li H X, Wang W J, Deng J F . Appl. Catal. A, 1999,176:129. https://linkinghub.elsevier.com/retrieve/pii/S0926860X98002324

doi: 10.1016/S0926-860X(98)00232-4     URL    
[21]
孙海杰(Sun H J), 陈凌霞(Chen L X), 黄振旭(Huang Z X), 刘寿长(Liu S C), 刘仲毅(Liu Z Y) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2015,36(10):1969. 6ff76495-4340-4c59-bb37-a58fdfff26fahttp://www.cjcu.jlu.edu.cn/CN/abstract/abstract25851.shtml

doi: 10.7503/cjcu20150288     URL    
[22]
Michel C, Zaffran J, Ruppert A M, Michalska M J, Jędrzejczyk M, Grams J, Sautet P . Chem. Commun., 2014,50:12450. https://www.ncbi.nlm.nih.gov/pubmed/24980805

doi: 10.1039/c4cc04401k     URL     pmid: 24980805
[23]
Akpa B S, D’Agostino C, Gladden L F, Hindle K, Manyar H, McGregor J, Li R, Neurock M, Sinha N, Stitt E H, Weber D, Zeitler J A, Rooney D W . J. Catal., 2012,289:30. https://linkinghub.elsevier.com/retrieve/pii/S0021951712000139

doi: 10.1016/j.jcat.2012.01.011     URL    
[24]
Cukierman S . BBA-Bioenergetics, 2006,1757:876. https://www.ncbi.nlm.nih.gov/pubmed/16414007

doi: 10.1016/j.bbabio.2005.12.001     URL     pmid: 16414007
[25]
Merte L R, Peng G, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F . Science, 2012,336:889. https://www.ncbi.nlm.nih.gov/pubmed/22605771

doi: 10.1126/science.1219468     URL     pmid: 22605771
[26]
Tan J J, Cui J L, Deng T S, Cui X J, Ding G Q, Zhu Y L, Li Y W . ChemCatChem, 2015,7:508. http://doi.wiley.com/10.1002/cctc.v7.3

doi: 10.1002/cctc.v7.3     URL    
[27]
Zhang Z G, Jackson J E, Miller D J . Ind. Eng. Chem. Res., 2002,41:691. https://pubs.acs.org/doi/10.1021/ie0104767

doi: 10.1021/ie0104767     URL    
[28]
Bindwal A B, Vaidya P D . Energ. Fuel., 2014,28:3357. ef32ff1c-92f1-425e-b6f9-24fdd20dee95http://dx.doi.org/10.1021/ef500498z

doi: 10.1021/ef500498z     URL    
[29]
Ramachandran P A, Chaudhari R V . Three-Phase Catalytic Reactors. New York: Gordon and Breach Science Publishers, 1983. 15.
[30]
Wei Z Z, Gong Y T, Xiong T Y, Zhang P F, Li H R, Wang Y . Catal. Sci. Technol., 2015,5:397. http://xlink.rsc.org/?DOI=C4CY00946K

doi: 10.1039/C4CY00946K     URL    
[31]
樊金龙(Fan J L), 侯玉翠(Hou Y C), 吴卫泽(Wu W Z), 张建伟(Zhang J W) . 中国科学:化学( Science China Chemistry), 2010,40(9):1387. 6b7712f1-565a-4838-983e-2322116956afhttp://chem.scichina.com:8081/sciB//CN/abstract/abstract418803.shtml
[32]
Deng L, Li J, Lai D M, Fu Y, Guo Q X . Angew. Chem. Int. Edit., 2009,121:6651.
[33]
Sato K, Ikekame H, Tosaka Y, Tsuzukiyama k, Togami Y, Fujisawa M . J. Magn. Magn. Mater., 1993,126:572. https://linkinghub.elsevier.com/retrieve/pii/0304885393906904

doi: 10.1016/0304-8853(93)90690-4     URL    
[34]
Toda T, Igarashi H, Uchida H, Watanabe M . J. Electrochem. Soc., 1999,146:3750. https://iopscience.iop.org/article/10.1149/1.1392544

doi: 10.1149/1.1392544     URL    
[35]
Jiang Z L, Lan G J, Liu X Y, Tang H D, Li Y . Catal. Sci. Technol., 2016: 7259.
[36]
Olcay H, Xu L, Xu Y, Huber G W . ChemSusChem, 2010,2:1420.
[37]
Yao G, Wu G J, Dai W L, Guan N J, Li L D . Fuel, 2015,150:175. https://linkinghub.elsevier.com/retrieve/pii/S0016236115001763

doi: 10.1016/j.fuel.2015.02.035     URL    
[38]
Li M X, Li G Y, Li N, Wang A Q, Dong W J, Wang X D, Cong Y . Chem. Commun., 2014,50:1414. http://xlink.rsc.org/?DOI=c3cc48236g

doi: 10.1039/c3cc48236g     URL    
[39]
Shimizu K, Kanno S, Kon K . Green Chem., 2014,16:3899. 0e62f601-4653-46eb-bfef-1d4547205518http://dx.doi.org/10.1039/c4gc00735b

doi: 10.1039/c4gc00735b     URL    
[40]
Yang Z, Huang Y B, Guo Q, Fu Y . Chem. Commun., 2013,49:5328. https://www.ncbi.nlm.nih.gov/pubmed/23648801

doi: 10.1039/c3cc40980e     URL     pmid: 23648801
[41]
Yuan J, Li S S, Yu L, Liu Y M, Cao Y, He H Y, Fan K N . Energ. Environ. Sci., 2013,6:3308. http://xlink.rsc.org/?DOI=c3ee40857d

doi: 10.1039/c3ee40857d     URL    
[42]
Hengne A M, Rode C V . Green Chem., 2012,14:1064. 7c5a228e-bbe6-4ef3-9505-0a559bd93ba2http://dx.doi.org/10.1039/c2gc16558a

doi: 10.1039/c2gc16558a     URL    
[43]
Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S . ChemSusChem, 2011,4:1749. https://www.ncbi.nlm.nih.gov/pubmed/22114041

doi: 10.1002/cssc.201100380     URL     pmid: 22114041
[44]
Jagadeesh R V, Surkus A E, Junge H, Pohl M M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M . Science, 2013,342:1073. b7ad1002-0863-41e1-be8f-fe7f38f3f96ehttp://dx.doi.org/10.1126/science.1242642

doi: 10.1126/science.1242642     URL    
[45]
Friedfeld M R, Shevlin M, Hoyt J M, Krska S W, Tudge M T, Chirik P J . ChemInForm, 2013,342:1076.
[46]
Zuo W, Lough A J, Li Y F, Morris R H . Science, 2013,342:1080. a137ad19-ec7c-4205-a0fe-3995e0069968http://dx.doi.org/10.1126/science.1243550

doi: 10.1126/science.1243550     URL    
[47]
Zuo W, Morris R H . Nat. Protoc., 2015,10:241. https://www.ncbi.nlm.nih.gov/pubmed/25569331

doi: 10.1038/nprot.2015.012     URL     pmid: 25569331
[48]
Yang H H, Nie R F, Xia W, Yu X L, Jin D F, Lu X H, Zhou D, Xia Q H . Green Chem., 2017,19:5714. http://xlink.rsc.org/?DOI=C7GC02648J

doi: 10.1039/C7GC02648J     URL    
[49]
Du X L, Liu Y M, Wang J Q, Cao Y, Fan K N . Chin. J. Catal., 2013,34:993. https://linkinghub.elsevier.com/retrieve/pii/S1872206711605226

doi: 10.1016/S1872-2067(11)60522-6     URL    
[50]
Mu Wei, Ben H X, Du X T, Zhang X D, Hu F, Liu W, Ar Ragauskas A J, Deng Y L . Bioresource Technol., 2014,173:6. 8b85e245-4f91-43ea-b6ca-b650ce637e05http://dx.doi.org/10.1016/j.biortech.2014.09.067

doi: 10.1016/j.biortech.2014.09.067     URL    
[51]
Deng W P, Liu M, Tan X S, Zhang Q H, Wang Y . J. Catal., 2010,271:22. https://linkinghub.elsevier.com/retrieve/pii/S0021951710000321

doi: 10.1016/j.jcat.2010.01.024     URL    
[52]
Hong Y K, Lee D W, Eom H J, Lee K Y . Appl. Catal. B: Environ., 2014,150:438.
[53]
Sudhakara M, Kantama M L, Jaya V S, Ramineni K, Ramanujachary K V, Akula V . Catal. Commun., 2014,50:101. https://linkinghub.elsevier.com/retrieve/pii/S1566736714000995

doi: 10.1016/j.catcom.2014.03.005     URL    
[54]
Fu J, Sheng D, Lu X Y . Catalysts, 2016,6:6. http://www.mdpi.com/2073-4344/6/1/6

doi: 10.3390/catal6010006     URL    
[55]
Long X D, Sun P, Li Z L, Lang R, Xia C G, Li F W . Chin. J. Catal., 2015,36:1512. https://linkinghub.elsevier.com/retrieve/pii/S1872206715609342

doi: 10.1016/S1872-2067(15)60934-2     URL    
[56]
徐圣(Xun S), 廖梦尘(Liao M C), 曾虹燕(Ceng H Y), 朱培函(Zhu P H), 张治青(Zhang Z Q), 黄清军(Huang H J), 刘小军(Liu X J), 张伟(Zhang W) . 化工学报( Journal of Chemical Industry and Engineering(China)), 2014,65(8):2863. 9278fa98-3038-4ead-8a2e-9406411918ebhttp://www.hgxb.com.cn/CN/abstract/abstract15783.shtml

doi: 10.3969/j.issn.0438-1157.2014.08.001     URL    
[57]
Xiong H F, Pham H N, Datye A K . Green Chem., 2015,45:4627.
[58]
Pham H N, Anderson A E, Johnson R L, Schmidt-Rohr K, Datye A K . KAngew. Chem. Int. Edit., 2012,51:13163.
[59]
Ravenelle R M, Copeland J R, Kim W G, Crittenden, J C, Sievers C . ACS Catal., 2011,1:552. a10729db-0a5a-4766-acf7-25069db433ebhttp://dx.doi.org/10.1021/cs1001515

doi: 10.1021/cs1001515     URL    
[60]
Zahir M H, Sato K, Mori H, Iwamoto Y, Nomura M, Nakao S . J. Am. Ceram. Soc., 2006,89:2874.
[61]
Palella B I, Lisi L, Pirone R, Russo, G, Notaro, M . Catal., 2006,47:728.
[62]
Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, Wang D, Dumesic J A, Datye A K . App. Catal. A Gen., 2011,397:153. https://linkinghub.elsevier.com/retrieve/pii/S0926860X11001116

doi: 10.1016/j.apcata.2011.02.026     URL    
[63]
Yu H, Nan L, Lan Z, Li D F, Xu X Z, Wu S, Di Y, Li C J, Zou Y C, Yu Y, Xiao F S . J. Phy. Chem. B, 2003,107:7551. https://pubs.acs.org/doi/10.1021/jp026899j

doi: 10.1021/jp026899j     URL    
[64]
Mokaya R . J. Phy. Chem. B, 2000,104:8279. https://pubs.acs.org/doi/10.1021/jp001494p

doi: 10.1021/jp001494p     URL    
[65]
Liu J, Yang Q, Kapoor M P, Setoyama N, Inagaki S, Yang J, Zhang L . J. Phy. Chem. B, 2005,109:12250. https://www.ncbi.nlm.nih.gov/pubmed/16852511

doi: 10.1021/jp0509109     URL     pmid: 16852511
[66]
Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E . J. Am. Chem. Soc., 2012,134:8570. https://pubs.acs.org/doi/10.1021/ja3015082

doi: 10.1021/ja3015082     URL    
[67]
Pham H N, Anderson A E, Johnson R L, Hien N, Schwartz T J, O’Neill B J, Duan P, Schmidt-Rohr K, Dumesic J A, Datye D K . ACS Catal., 2015,5:4546. https://pubs.acs.org/doi/10.1021/acscatal.5b00329

doi: 10.1021/acscatal.5b00329     URL    
[68]
Xiong H, Schwartz T J, Andersen N I, Datye A K . Angew. Chem. Int. Edit., 2015,54:7939. http://doi.wiley.com/10.1002/anie.201502206

doi: 10.1002/anie.201502206     URL    
[69]
Xiong H F, Pham H N, Datye A K . J. Catal., 2013,302:93. https://linkinghub.elsevier.com/retrieve/pii/S0021951713000924

doi: 10.1016/j.jcat.2013.03.007     URL    
[70]
Lan G J, Tang H D, Zhou Y P, Han W F, Liu H Z, Li X N, Li Y . ChemCatChem, 2014,6, 353. 468cf608-249b-4520-8c0a-ffad238a5361http://dx.doi.org/10.1002/cctc.201300693

doi: 10.1002/cctc.201300693     URL    
[71]
Li Y, Lan G J, Wang H Y, Tang H D, Yan X H, Liu H Z . Catal. Commun., 2012,20, 29. https://linkinghub.elsevier.com/retrieve/pii/S1566736711005218

doi: 10.1016/j.catcom.2011.12.037     URL    
[72]
Liu X Y, Lan G J, Sun P P, Qian L H, Reina T R, Wang L, Li Y, Liu J . Catal. Today, 2019, DOI: https://doi.org/10.1016/j.cattod.2018.12.039.
[73]
Chen H R, Shen K, Mao Q, Chen J Y, Li Y W . ACS Catal., 2018,8:1417. https://pubs.acs.org/doi/10.1021/acscatal.7b03270

doi: 10.1021/acscatal.7b03270     URL    
[1] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[4] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[5] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[6] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[7] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[8] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[9] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[10] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[11] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[12] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[13] 谢嘉维, 张香文, 谢君健, 聂根阔, 潘伦, 邹吉军*. 由生物质合成高密度喷气燃料[J]. 化学进展, 2018, 30(9): 1424-1433.
[14] 纪娜, 宋静静, 刁新勇, 宋春风, 刘庆岭*, 郑明远*. 硫化物催化木质素及其模型化合物转化制备高附加值化学品[J]. 化学进展, 2017, 29(5): 563-578.
[15] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.