English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1729-1736 DOI: 10.7536/PC190321 前一篇   后一篇

• •

新型2D MXenes 纳米材料在光催化领域的应用

赵文军1, 秦疆洲1, 尹志凡2, 胡霞1,**(), 刘宝军1,3,**()   

  1. 1. 贵州大学资源与环境工程学院 贵阳 550025
    2. 大连理工大学环境学院 大连 116024
    3. 香港理工大学电机工程系 香港 999077
  • 收稿日期:2019-03-19 出版日期:2019-12-15 发布日期:2019-08-01
  • 通讯作者: 胡霞, 刘宝军
  • 作者简介:
    † These authors contributed equally to this work.
  • 基金资助:
    国家自然科学基金项目(21703044)

2D MXenes for Photocatalysis*

Wenjun Zhao1, Jiangzhou Qin1, Zhifan Yin2, Xia Hu1,**(), Baojun Liu1,3,**()   

  1. 1. College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
    2. School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
    3. Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2019-03-19 Online:2019-12-15 Published:2019-08-01
  • Contact: Xia Hu, Baojun Liu
  • About author:
    ** E-mail: (Xia Hu);
    (Baojun Liu)
  • Supported by:
    National Natural Science Foundation of China(21703044)

MXenes是一类新型的二维(2D)过渡金属碳化物、氮化物或碳氮化物的总称,在物理、化学、材料科学和纳米技术领域产生了巨大的影响。MXenes材料在制备过程中,表面会生成羟基、氟等基团,表面具有亲水性和良好的可见光响应,加上其自身具有比表面积大、活性位点丰富等优点,使其成为一种新兴的光催化材料。本文主要对MXenes及其复合材料在光催化领域的最新研究进展进行总结,简要介绍了MXenes材料的合成方法及理化性质,着重介绍了MXenes及其复合材料作为光催化剂的复合方式,光催化机理等方面的内容,并逐一列举其在光催化氧化与还原反应中的重要作用,最后对MXenes及其复合物的进一步研究提出建议和展望。

MXene, the latest 2D transition metal carbides/carbonitrides/nitrides, has exerted a great influence in the fields of physics, chemistry, material science and nanotechnology. It is an important and increasingly popular category for photocatalysis because of the advantages including hydrophilia, visible-light response, high specific surface area and abundant active sites with —OH or —F terminal during preparation. This review provides an overview of the latest progress of MXenes and its composites in the field of photocatalysis research. Firstly, we give a brief introduction of the synthesis, structure and fundamental properties, methodologies of MXenes and emphasize its composites and the corresponding photocatalysis mechanisms. Then we list the important roles in photocatalytic oxidation and reduction it plays, and forecast the development and potential applications of MXenes.

()
表1 部分MAX相制备MXenes的实验条件
Table 1 Process conditions for MXenes synthesis from MAX phases
图1 MXenes的结构及侵蚀制备过程
Fig. 1 Illustration of the MXenes configurations and schematic depicting the synthesis process of MXene
图2 Ti3C2Tx对Cr(Ⅵ)去除机理[40]
Fig. 2 Illustration of the Removal Mechanism of Cr(Ⅵ) by the Ti3C2Tx nanosheets[34]
图3 (a) 由交换电流与吉布斯自由能构成析氢反应的火山图[36];(b)CdS/Ti3C2 体系中可见光照射下电荷分离与迁移机理[8]
Fig. 3 (a) Volcano curve of exchange current(i0) as a function of the average Gibbs free energy of hydrogen adsorption(ΔGH*a)[36];(b) The charge separation and transfer in the CdS/Ti3C2 system under visible-light irradiation[8]
图4 (a, b)不同浓度HF侵蚀下具有缺陷的单层Ti3C2Tx扫描透射电子显微镜[39];(c, d) TiO2/Ti3C2复合结构的SEM和TEM[40]
Fig. 4 (a, b) HAADF-STEM images from single-layer Ti3C2Tx MXene flakes prepared using etchants with different HF concentration[39];(c, d) SEM and TEM of TiO2/Ti3C2 composites[41]
[1]
Qu Y, Duan X . Chem. Soc. Rev., 2013,42:2568. https://www.ncbi.nlm.nih.gov/pubmed/23192101

doi: 10.1039/c2cs35355e     URL     pmid: 23192101
[2]
Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A . Adv. Mater., 2017,29:20.
[3]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y . Adv. Mater., 2014,26:992. https://www.ncbi.nlm.nih.gov/pubmed/24357390

doi: 10.1002/adma.201304138     URL     pmid: 24357390
[4]
Barsoum M W . MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. John Wiley & Sons: Weinheim, Germany, 2013.
[5]
Dhakal C, Aryal S, Sakidja R, Ching W Y . J. Eur. Ceram. Soc., 2015,35:3203.
[6]
Sun Y, Gao S, Lei F, Xiao C, Xie Y . J. Cheminformatics., 2015,48:3.
[7]
Zhang X, Xie Y . Chem. Soc. Rev., 2014,45:8187.
[8]
Ran J R, Gao G P, Li F T, Ma T Y, Du A, Qiao S Z . Nat. Commun., 2017,8:13907. https://www.ncbi.nlm.nih.gov/pubmed/28045015

doi: 10.1038/ncomms13907     URL     pmid: 28045015
[9]
He H, Lin J, Fu W, Wang, X L, Wang, H, Zeng Q S, Gu Q, Li Y M, Yan C, Tay B K, Xue C, Hu X, Pantelides S T, Zhou W, Liu Z, . Adv. Energy. Mater., 2016,6:14.
[10]
Zhang X, Zhao X, Wu D, Jing Y, Zhou Z . Nanoscale, 2015,7:16020. https://www.ncbi.nlm.nih.gov/pubmed/26370829

doi: 10.1039/c5nr04717j     URL     pmid: 26370829
[11]
Anasori B, Lukatskaya M R, Gogotsi Y . Nat. Rev. Mater., 2017,2:16098.
[12]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W . Adv. Mater., 2011,23:4248. https://www.ncbi.nlm.nih.gov/pubmed/21861270

doi: 10.1002/adma.201102306     URL     pmid: 21861270
[13]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W . ACS Nano, 2012,6:1322. https://www.ncbi.nlm.nih.gov/pubmed/22279971

doi: 10.1021/nn204153h     URL     pmid: 22279971
[14]
Naguib M, Halim J, Lu J, Cook M K, Hultman L, Gogotsi Y, Barsoum W M . J. Am. Chem. Soc., 2013,135:15966. https://www.ncbi.nlm.nih.gov/pubmed/24144164

doi: 10.1021/ja405735d     URL     pmid: 24144164
[15]
Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, Barsoum M W . Adv. Funct. Mater., 2016,26:3118.
[16]
Ying Y, Liu Y, Wang X, Mao Y, Cao W, Hu P, Peng X . ACS Appl. Mater. Inter., 2015,7:1795.
[17]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W . Nature, 2014,516:78. https://www.ncbi.nlm.nih.gov/pubmed/25470044

doi: 10.1038/nature13970     URL     pmid: 25470044
[18]
Seh Z W, Fredrickson K D, Anasori B, Kibsgaard J, Strickler A L, Lukatskaya M R, Gogotsi Y, Jaramillo T F, Vojvodic A . ACS Energy Lett., 2016,1:589.
[19]
Lipatov A, Alhabeb M, Lukatskaya M, Boson A J, Gogotsi Y, Sinitskiin A . Adv. Electron. Mater., 2016,2:12.
[20]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y . Science, 2016,353:1137. https://www.ncbi.nlm.nih.gov/pubmed/27609888

doi: 10.1126/science.aag2421     URL     pmid: 27609888
[21]
Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, Ren W C . Nat. Mater., 2015,14:11.
[22]
Eklund P, Rosen J, Persson P O A . J. Phys. D. Appl. Phys., 2017,50:1.
[23]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W . ACS Nano, 2015,9:9507. https://www.ncbi.nlm.nih.gov/pubmed/26208121

doi: 10.1021/acsnano.5b03591     URL     pmid: 26208121
[24]
Zhang X, Lei J, Wu D, Zhao X, Jing Y, Zhou Z . J. Mater. Chem. A, 2016,4:4871.
[25]
Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y . Phys. Chem. Chem. Phys., 2014,16:7841. https://www.ncbi.nlm.nih.gov/pubmed/24643873

doi: 10.1039/c4cp00467a     URL     pmid: 24643873
[26]
Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc’h T . Phys. Rev. B, 2015,91:201409.
[27]
Berdiyorov G R . AIP. Adv., 2016,6:055105.
[28]
Cao S, Shen B, Tong T, Fu J, Yu J . Adv. Funct. Mater., 2018,28:21. https://www.ncbi.nlm.nih.gov/pubmed/29875619

doi: 10.1002/adfm.201800618     URL     pmid: 29875619
[29]
Guo Z, Miao N, Zhou B, Sa B, Sun Z . J. Mater. Chem. C, 2017,5:978.
[30]
Zha X, Zhou J, Zhou Y, Huang Q, He J, Francisco J S, Luo K, Du S Y . Nanoscale, 2016,8:6110. https://www.ncbi.nlm.nih.gov/pubmed/26932122

doi: 10.1039/c5nr08639f     URL     pmid: 26932122
[31]
Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y . J. Mater. Chem. A, 2014,2:14334.
[32]
Peng C, Wang H, Yu H, Peng F . Mater. Res. Bull., 2017,89:16.
[33]
Peng Q, Guo J, Zhang Q, Xiang J, Liu B, Zhou A, Liu R, Tian Y . J. Am. Chem. Soc., 2014,136:4113. https://www.ncbi.nlm.nih.gov/pubmed/24588686

doi: 10.1021/ja500506k     URL     pmid: 24588686
[34]
Mao Y, Cao Wei, Hu P, Peng X . ACS Appl. Mater. Inter., 2015,7:1795.
[35]
Chen Y, Xie X, Xin X, Tang Z, Xu Y . ACS Nano, 2018.
[36]
Gao G, O’Mullane A P, Du A . ACS Catal., 2017,7:494.
[37]
Halmann M . Nature, 1978,275:115.
[38]
Sun Y, Sun Y, Meng X, Gao Y, Dall'Aqnese Y, Chen G, Dall'Aqnese C, Wang X . Catal.Sci. Technol., 2019,9:310.
[39]
Sang X, Xie Y, Lin M, Alhabeb M, Aken K L, Gogotsi Y, Kent P, Xiao K, Unocic R . ACS Nano, 2016,10:9193. https://www.ncbi.nlm.nih.gov/pubmed/27598326

doi: 10.1021/acsnano.6b05240     URL     pmid: 27598326
[40]
Low J, Zhang L, Tong T, Shen B, Yu J . J. Catal., 2018,361:255.
[41]
Zeng Z, Yan Y, Chen J, Zan P, Tian Q, Chen P . Adv. Funct. Mater., 2018,1806500.
[42]
Yu X, Wang T, Yin W, Zhang Y . Int. J. Hydrogen. Energ., 2019,44:2704
[43]
Xu Y, Wang S, Yang J, Han B, Nie R, Wang J, Dong Y, Yu X, Wang J, Jing H . J. Mater. Chem. A, 2018,6:15213.
[44]
Anasori B, Shi C, Moon E J, Xie Y, Voigt C A, Kent P R, May S J, Billinge S J, Barsoum M W, Gogotsi Y . Nanoscale Horiz., 2016,1:227. https://www.ncbi.nlm.nih.gov/pubmed/32260625

doi: 10.1039/c5nh00125k     URL     pmid: 32260625
[45]
Naguib M, Gogotsi Y, Barsoum W M . Adv. Mater., 2014,26:992. https://www.ncbi.nlm.nih.gov/pubmed/24357390

doi: 10.1002/adma.201304138     URL     pmid: 24357390
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[10] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[11] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[12] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[15] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.