English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1455-1462 DOI: 10.7536/PC171233 前一篇   

• 综述 •

煤气化可弃型催化剂

吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳   

  1. 贵州大学化学与化工学院 贵阳 550025
  • 收稿日期:2017-12-22 修回日期:2018-04-08 出版日期:2018-09-15 发布日期:2018-06-28
  • 通讯作者: 敖先权 E-mail:aoxianquan@163.com
  • 基金资助:
    贵州省科技厅重大应用基础研究项目(No.20142004)和贵州省科技厅重大专项项目(No.20156011)资助

Disposable Catalysts for Coal Gasification

Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang   

  1. College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
  • Received:2017-12-22 Revised:2018-04-08 Online:2018-09-15 Published:2018-06-28
  • Supported by:
    The work was supported by the Major Applied Basic Research Project of Guizhou Provincial Science and Technology Department(No. 20142004) and the Major Projects of Guizhou Provincial Science and Technology Department(No. 20156011).
煤的高效催化气化技术是提高煤气化效率的重要途径。目前,除CaCO3以外,其他碱金属、碱土金属与过渡金属类催化剂都由于成本较高、回收困难等问题并未广泛应用。可弃型催化剂具有廉价、不必回收、环保并兼有调节灰熔特性、固硫等优点,近年来在煤气化领域的研究和应用受到广泛关注。本文综述了国内外几类可弃型催化剂在煤气化领域的研究进展,包括钙基、工业废液、废渣和生物质灰等催化剂的催化特性及其机理,讨论了在实际应用中存在的问题,展望了未来煤气化可弃型催化剂的发展前景。
Catalytic coal gasification technology is essential to improve the efficiency of coal gasification. At present, alkali metals, alkaline earth metals and transition metal catalysts have poor application induced by their high cost and difficulty in recovery except for CaCO3. Disposable catalysts have got a multitude of attention on research and application of coal gasification in recent years, which have the advantages of being cheap, disposable, environmentally friendly, and capable of adjusting the ash melt characteristic and sulfation reaction. In this paper, the progress of several kinds of disposable catalysts in the field of coal gasification is reviewed, including the catalytic properties and mechanism of catalysts such as calcium based catalysts, waste water catalysts, waste solid catalysts and biomass ash catalysts, the problems in practical application are discussed, and the challenges and perspectives of the coal gasification catalysts are also prospected.
Contents
1 Introduction
2 Types of disposable catalysts and their catalytic mechanism
2.1 Calcium based catalysts
2.2 Industrial waste water catalysts
2.3 Industrial waste solid catalysts
2.4 Biomass catalysts
3 Conclusion and outlook

中图分类号: 

()
[1] Gao M Q, Lv P, Yang Z R, Bai Y H, Li F, Xie K C. Fuel, 2017, 206:107.
[2] Li C Z. Fuel, 2013, 112(3):610.
[3] Monterroso R, Fan M H, Zhang F, Gao Y, Popa T, Argyle M D, Towler B, Sun Q Y. Fuel, 2014, 116(116):341.
[4] Chen Z H, Lai D G, Bai L Q, Tian Y, Gao S Q, Xu G W, Tsutsumi A. Fuel Process.Technol, 2015, 140:88.
[5] Mostafavi E, Mahinpey N, Manovic V. Catal. Today, 2014, 237:111.
[6] Fan S M, Yuan X Z, Zhao L, Xu L H, Kang T J, Kim H T. Fuel, 2016, 165:397.
[7] Zhang F, Xu D P, Wang Y G. Fuel Process. Technol., 2015, 130:107.
[8] Wang Y W, Wang Z Q, Huang J J, Fang Y T. Energy Fuels, 2015, 29(11):6988.
[9] Hippo E J. US 11421507, 2007.
[10] 毕继诚(Bi J C). CN 2010/001406, 2011.
[11] 陈兆辉(Chen Z H), 刘雷(Liu L), 金亚丹(Jin Y D), 吴丽锋(Wu L F), 武恒(Wu H), 湛月平(Zhan Y P), 李克忠(Li K Z), 毕继诚(Bi J C). 化工学报(Journal of Chemical Industry and Engineering). 2017, 68(5):2155.
[12] Lin S Y, Suzuki Y, Hatano H, Harada M. Energ. Convers. Manage., 2002, 43:1290.
[13] Tang J, Wang J. Fuel Process.Technol., 2016, 142:34.
[14] Freek K, Hans P,Moulijn J A. AlChE J., 1986, 32(4):691.
[15] Popa T, Fan M, Argyle M D, Dyar M D, Gao Y, Tang J, Speicher E A, Kammen D M. Appl Catal A-Gen., 2013, s464/465(6):207.
[16] Mei Y G, Wang Z Q, Fang H B, Wang Y W, Huang J J, Fang Y T. Energy Fuels, 2017, 31(2):1235.
[17] Ding L, Zhou Z J, Huo W, Wang Y F, Yu G S. Ind. Eng. Chem. Res., 2014, 53(49):19159.
[18] Murakami K, Masahiko S, Naoto T, Ohtsuka Y, Katsuyasu S. Fuel Process.Technol., 2015, 129:96.
[19] Ohtsuka Y, Kenji A. Energy Fuels, 1996, 10(2):434.
[20] 孙钟华(Sun Z H), 代正华(Dai Z H), 周志杰(Zhou Z J), 于广锁(Yu G S). 中国电机工程学报(Proceedings of the CSEE), 2011, 31(20):8.
[21] 刘锦启(Liu J Q), 陈前林(Chen Q L), 王景行(Wang J H). 煤炭学报(Journal of China Coal Society), 2013, 38(s2):485.
[22] Li N, Li Y, Zhou H C, Liu Y, Song Y M, Zhi K D, He R X, Yang K L, Liu Q S. Fuel, 2017, 203:823.
[23] 李阳(Li Y), 刘洋(Liu Y), 冯伟(Feng W), 赵斌(Zhao B), 智科端(Zhi K R), 滕英跃(Teng Y Y), 宋银敏(Song Y M), 何润霞(He R X), 周晨亮(Zhou C L), 刘全生(Liu Q S).燃料化学学报(Journal of Fuel Chemistry and Technology), 2015, 43(9):1042.
[24] Kuznetsov P N, Kolesnikova S M, Kuznetsova L I. Int.J.Clean.Coal.Energ., 2013, 02(1):8.
[25] Kuznetsov P N, Kuznetsova L I, Mikhlin Y L. Fuel, 2015, 162:209.
[26] Lin S Y, Wang Y, Suzuki Y. Energy Fuels, 2007, 21(5):2767.
[27] 王少龙(Wang S L), 张鹏飞(Zhang P F), 周松华(Zhou S H), 谢燕(Xie Y), 曹阳(Cao Y), 敖先权(Ao X Q). 过程工程学报(The Chinese Journal of Process Engineering), 2017, 17(6):1325.
[28] Diego L F D, Abad A, Garcíalabiano F, Adánez J, Gayán P. Ind. Eng. Chem. Res., 2004, 43(13):3261.
[29] lvarez-Rodríguez R, Clemente-Jul C. Fuel, 2008, 87(17):3520.
[30] Jia Y B, Huang J J, Wang Y. Energy Fuels, 2004, 18(6):1632.
[31] Shuai C, Hu S, He L, Xiang J, Sun L S, Su S, Jiang L, Chen Q D, Xu C F. Int. J. Hydrogen Energy, 2014, 39(28):15509.
[32] 陈兆辉(Chen Z H), 刘雷(Liu L), 武恒(Wu H), 裴增楷(Pei Z K), 湛月平(Zhan Y P), 李克忠(Li K Z), 郑岩(Zheng Y), 吴丽锋(Wu L F), 毕继诚(Bi J C). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2016, 44(10):1165.
[33] Chen Z H, Dun Q M, Shi Y, Lai D G, Zhou Y, Gao S Q, Xu G W. Chem. Eng. J., 2017, 316:846.
[34] Zhang L X, Kudo S, Tsubouchi N, Hayashi J, Ohtsuka Y, Norinaga K. Fuel Process. Technol., 2013, 113:6.
[35] Shao S, Chen X G, Liu H, Wang F Y. Energ Source.Part A, 2012, 34(10):927.
[36] Xiang Y, Wang R K, Liu J Z, Zhu J F, Zhou J H, Cen K F. Pet.Sci.Technol., 2016, 34(11/12):1073.
[37] Jaffri G R, Zhang J Y. J. Fuel. Chem. Technol., 2007, 35(2):134.
[38] Jaffri G R, Zhang J Y. Chin. J. Chem. Eng., 2007, 15(5):675.
[39] Jaffri G R, Zhang J Y. Chin. J. Chem. Eng., 2008, 16(4):578.
[40] Gea G, Murillo M B, Arauzo J. Ind. Eng. Chem. Res., 2002, 41(19):4717.
[41] Kuang J P, Zhou J H, Zhou Z J, Liu J Z, Cen K F. Energy Convers. Manage., 2008, 49(2):255.
[42] Yuh S J, Wolf E E. Fuel, 1984, 63(11):1608.
[43] Jaffri G R, Zhang J Y. J.Fuel.Chem.Technol., 2008, 36(4):412.
[44] Cao C Q, Guo L J, Yin J R, Hui J, Wen C, Yi J, Yao X D. Energy Fuels, 2014, 29(1):391.
[45] Kuang J P, Zhou J H, Zhou Z J, Liu J Z, Cen K F. Asia-Pac.J.Chem.Eng., 2010, 2(3):156.
[46] 周俊虎(Zhou J H), 匡建平(Kuang J P), 周志军(Zhou Z J), 林妙(Lin M), 刘建忠(Liu J Z), 岑可法(Cen K F). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 2007, 21(1):86.
[47] 李海宾(Li H B), 韩敏芳(Han M F). 煤炭学报(Journal of China Coal Society), 2015, 40(s1):238.
[48] Parvez A M, Mujtaba L M, Pang C H, Wu T. Fuel Process. Technol., 2016, 149:236.
[49] Winaya I N S, Hartati R S, Lokantara I P, Subawa I G, Putrawan I M A. Int.J.Technol., 2015, 6(6):931.
[50] André R N, Pinto F, Franco C, Dias M, Gulyurtlu I, Matos M A A, Cabrita I. Fuel, 2005, 84:1638.
[51] Mallick D, Mahanta P, Moholkar V S. Fuel, 2017, 204:106.
[52] Fernandes R, Hill J M, Kopyscinski J. Energy Fuels, 2017, 31(2):1842.
[53] Yan L B, Cao Y, He B S. Chem. Eng. J., 2018, 331:438.
[54] 张德成(Zhang D C), 敖先权(Ao X Q), 陈前林(Chen Q L), 曹阳(Cao Y), 谢燕(Xie Y), 罗焕虎(Luo H H), 张纪芳(Zhang J F).过程工程学报(The Chinese Journal of Process Engineering), 2016, 16(4):633.
[55] Howaniec N, Smoliński A. Energy, 2017, 118(1):20.
[56] Qin Y H, Han Q Q, Zhao Z B, Du Z Y, Feng J, Li W Y, Vassilev S V, Vassileva C G. Fuel, 2017, 202:561.
[57] Wei J T, Gong Y, Guo Q H, Ding L, Wang F C, Yu G S. Bioresour.Technol., 2017, 227:352.
[58] Feng P, Lin W G, Jensen P A, Song W L, Hao L F, Raffelt K, Johansen K D. Energy, 2016, 111:793.
[59] Masnadi M S, Grace J R, Bi X T, Lim C J, Ellis N. Appl.Energ., 2015, 140:205.
[60] Ding L, Zhang Y Q, Wang Z Q, Huang J J, Fang Y T. Bioresour.Technol., 2014, 173:16.
[61] Ellis N, Masnadi M S, Roberts D G, Kochanek M A, Ilyushechkin A Y. Chem. Eng. J., 2015, 279:402.
[62] Rizkiana J, Guan G Q, Widayatno W B, Hao X G, Li X M, Huang W, Abudula A. Appl.Energ., 2014, 133(6):288.
[63] Ding L, Gong Y, Wang Y F, Wang F C, Yu G S. Appl.Energ., 2017, 195:723.
[64] Brown R C, Liu Q, Norton G. Biomass Bioenergy, 2000, 18:499.
[65] Masnadi M S, Grace J R, Bi X T, Lim C J, Ellis N, Li Y H, Watkinson A P. Renew.Energ., 2015, 83:918.
[66] Kongsomart B, Kannari N, Takarada T. Int. J.Biomass.Renew., 2016, 5(2):12.
[67] Sams D A, Shadman F. AlChE J., 1986, 32(7):1137.
[68] Zhang Z Y, Pang S S, Levi T. Renew.Energ., 2017, 101:361.
[69] 姚奎(Yao K), 张金刚(Zhang J G), 竹怀礼(Zhu H L), 王兴军(Wang X J), 于广锁(Yu G S), 刘海峰(Liu H F), 王辅臣(Wang F C). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2017, 45(1):27.
[70] Lu J J, Chen W H. Appl. Energ., 2015, 160:56.
[71] Zhang Y, Zheng Y, Yang M J, Song Y C. Bioresour.Technol., 2016, 200:791.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
阅读次数
全文


摘要

煤气化可弃型催化剂