English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 831-846 DOI: 10.7536/PC181018 前一篇   后一篇

• •

石墨相氮化碳材料在水环境污染物去除中的研究

刘玥1, 吴忆涵1, 庞宏伟1, 王祥学1,2,**(), 于淑君1, 王祥科1   

  1. 1.华北电力大学 环境科学与工程学院 资源环境系统优化教育部重点实验室 北京 102206
    2.华北电力大学(保定) 环境科学与工程系 保定 071003
  • 收稿日期:2018-10-16 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 王祥学
  • 基金资助:
    国家自然科学基金项目(21876048); 中央高校基本科研业务费专项资金(2018MS114)

Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials

Yue Liu1, Yihan Wu1, Hongwei Pang1, Xiangxue Wang1,2,**(), Shujun Yu1, Xiangke Wang1   

  1. 1.MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
    2.Department of Environmental Science and Engineering, North China Electric Power University(Baoding), Baoding 071003, China;
  • Received:2018-10-16 Online:2019-06-15 Published:2019-04-26
  • Contact: Xiangxue Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21876048); Fundamental Research Funds for the Central Universities(2018MS114)

水污染是世界性问题,严重影响了人类的身体健康和环境的可持续性。迫切需要一种高效环保的吸附剂材料用于水体污染治理。石墨相氮化碳(g-C3N4)材料具有与石墨类似的层状结构,具有许多优异性质,如大的表面积、高的热稳定性和化学惰性,成为新兴的吸附剂材料。本文主要介绍了g-C3N4基材料在重金属、放射性核素以及有机污染物去除方面的应用。通过批实验、光谱分析、表面配位模型和理论计算等技术系统分析了g-C3N4基材料与污染物之间的作用机理。g-C3N4基材料与污染物之间的相互作用主要归因于表面配位、π-π作用、离子交换作用和静电作用。本文有助于读者进一步了解g-C3N4基材料与污染物之间的作用机理,并且发掘更多的g-C3N4改性材料,将其应用于环境修复领域当中。

Water pollution is a worldwide issue, which seriously affects human health and environmental sustainability. Highly efficient and environmentally friendly adsorbent materials are urgently needed for water pollution treatments. The layered structure of graphite phase carbon nitride(g-C3N4) is similar to graphite, so it has many excellent properties, such as large surface area, high thermal stability and chemical inertness, which make it an emerging adsorbent material. This paper mainly introduces the application of g-C3N4-based materials in the elimination of heavy metal ions, radionuclides and organic pollutants. The interaction mechanisms between g-C3N4-based materials and contaminants are analyzed by batch experiments, spectral analysis, surface coordination model and theoretical calculation. The interaction mechanisms are mainly surface complexation, π-π stacking, ion exchange and electrostatic interaction. This paper will help readers further understand the interaction mechanisms between g-C3N4-based materials and contaminants, and explore more g-C3N4 modified materials for environmental remediation.

()
图1 (a)g-C3N4实物图、晶体结构图(白球表示碳原子、蓝球表示氮原子)[60]以及其他四种氮化碳晶体结构图(灰球表示碳原子、蓝球表示氮原子)[61];(b)g-C3N4的s-三嗪和三-s-三嗪结构图(灰球表示碳原子、蓝球表示氮原子)[62]
Fig. 1 (a) Physical map, crystal structure diagram of g-C3N4(white balls denote carbon atoms, blue balls denote nitrogen atoms)[60] and crystal structure diagrams of another four types of carbon nitride(grey balls denote carbon atoms, blue balls denote nitrogen atoms)[61];(b) s-triazine model and tris-s-triazine model of g-C3N4(gray balls denote carbon atoms and blue balls denote nitrogen atoms)[62]
图2 采用不同前体(三聚氰胺、氰胺、二氰胺、尿素和硫脲)合成g-C3N4示意图(黑、蓝、白、红和黄色球分别表示碳、氮、氢、氧和硫原子)[50]
Fig. 2 Schematic diagram of the synthesis process of g-C3N4 with different precursors(melamine, cyanamide, dicyanamide, urea and thiourea)(black, blue, white, red and yellow balls denote C, N, H, O and S atoms, respectively)[50]
表1 g-C3N4基材料合成工艺与结构性质表
Table 1 Summary table of synthesis process and structure of g-C3N4-based materials
g-C3N4-based material Precursors Temperature(℃) Time(h)
and Gas
BET
(m2·g-1)
Total porevolume
(cm3·g-1)
Average pore radius
(nm)
ref
2D-meso-CN Cyanamide 550 3(air) 361 0.50 2.8 72
3D-meso-CN 343 0.67 2.5&8.0
mpg-CN0.1 Ammonium thiocyanate 600 2(N2) 125 0.45 - 96
mpg-CN0.2 154 0.63 -
mpg-CN0.4 176 0.77 -
DCN Dicyandiamide 550 3(air) 12 0.09 24.4 97
TCN Thiourea 550 11 0.09 26.2
UCN Urea 550 70 0.32 18.2
g-C3N4-D Dicyandiamide 550 2(air) 30 0.19 - 98
g-C3N4-T Thiourea 550 2(air) 27 0.04 -
CN-30 Urea 550 1(air) 52 0.25 - 99
CN-60 1(air) 62 0.30 -
CN-120 2(air) 75 0.34 -
CN-240 4(air) 288 1.41 -
CNNS Urea 550&500 4&2(air) 113 0.53 2.7 100
Co3O4/CNNS-1100 CNNS&CoCl2·6H2O 300 2(air) 100 0.48 2.5
Cu-FeOOH/CNNS CNNS&FeCl3·6H2O&CuCl2 25 8(air) 81 1.3 101
a-AgSiO/CNNS-500 CNNS&AgNO3&Na2SiO3 25 3(air) 185 5.2 102
MCN-1-673 Carbon tetrachloride
& Ethylenediamine
400 5(N2) 447 0.51 3.8 103
MCN-1-773 500 487 0.55 3.9
MCN-1-873 600 528 0.65 3.9
g-C3N4 Melamine 550 4(air) 13 0.05 26.7 104
ag-C3N4 HCl treated melamine 26 0.12 30.3
GS-CN450 Guanidine thiocyanate 450 2(N2) 5 0.03 3.6 105
GS-CN500 500 6 0.04 3.6
GS-CN550 550 8 0.05 3.6
GS-CN600 600 16 0.11 3.6
GS-CN650 650 31 0.18 2.6&3.6
GS-CN700 700 42 0.27 2.7&3.6
g-C3N4(500) Guanidine hydrochloride 500 3(air) 8 0.04 - 106
g-C3N4(550) 550 16 0.09 3.7
g-C3N4(600) 600 53 0.38 3.8
g-C3N4(650) 650 65 0.52 4.0
g-C3N4(melamine 520) Melamine 500&520 2&2(air) 3 0.002 -
g-C3N4(melamine 650) 650 3(air) 19 0.15 2.1
g-C3N4-H2-450 Melamine 550&450 4(He)&3(H2) 11 0.06 - 107
g-C3N4-H2-500 550&500 16 0.08 -
g-C3N4-H2-550 550&550 28 0.16 -
g-C3N4-O2-450 550&450 4(He)&3(O2) 15 0.07 -
g-C3N4-O2-500 550&500 18 0.08 -
g-C3N4-O2-550 550&550 23 0.11 -
g-C3N4-470 Melamine 470 2(air) 6 0.02 35.2 108
g-C3N4-500 500 42 0.14 9.2
g-C3N4-520 520 174 0.77 15.6
g-C3N4-540 540 210 0.94 16.5
0.5 wt% Sucrose-mediated g-C3N4 Melamine & Sucrose 600 2(air) 77 0.27 17.7 109
1 wt% Sucrose-mediated g-C3N4 121 0.36 13.2
2.5 wt% Sucrose-mediated g-C3N4 128 0.43 17.5
CN-1 Add water urea 450 1(air) 38 0.21 - 110
CN-3 3(air) 96 0.72 -
CN-5 5(air) 106 0.68 -
CNa Ammonium thiocyanate 550 2(NH3) 46 0.25 - 111
MCN Carbon tetrachloride
&Ethylenediamine
600 5(N2) 278 0.38 6.2 112
MCN/C 2(N2) 338 0.33 6.2
图3 (a)初湿含浸法合成2D/3D-meso-CN示意图[72];(b)g-C3N4/β-CD合成过程示意图[87]
Fig. 3 (a) Schematic diagram of the synthesis process of 2D/3D-meso-CN by incipient wetness[72];(b) Schematic diagram of the synthesis process of g-C3N4/β-CD[87]
图4 g-C3N4纳米管的(a)XRD、(b)FT-IR、(c)C1s和(d)N1s的XPS光谱图;(e)g-C3N4片层和(f)g-C3N4纳米管的原子结构模型图[90]
Fig. 4 (a) XRD,(b) FT-IR,(c) C1s and(d) N1s of XPS spectra of g-C3N4 nanotubes; Atomic models of(e) g-C3N4 layer and(f) g-C3N4 nanotube[90]
表2 g-C3N4基材料吸附性能表
Table 2 Summary table of adsorption performance of g-C3N4 based materials
Adsorbent Adsorbate m/V
(g·L-1)
C0(mg·
L-1)
pH Time(h) SSA
(m2·
g-1)
qmax
(mg·
g-1)
Interaction mechanism ref
g-C3N4 Pb(Ⅱ) 0.3 200 3.5 1~2 11 281.8 Internal surface complexation 135
Cu(Ⅱ) - 132.8
Cd(Ⅱ) - 112.4
Ni(Ⅱ) 37.6
g-C3N4 nanosheets Pb(Ⅱ) 0.5 6.3 6 418 518.1 Internal surface complexation 136
Cd(Ⅱ) 125.1
g-C3N4 nanosheets P(Ⅴ) 0.5 3.5 24 418 76.6 Internal surface complexation 137
Cr(Ⅵ) 95.7
Re(Ⅶ) 136.1
S3.9%-g-C3N4 Pb(Ⅱ) 0.2 10 4.5 2 16 52.6 138
Fe3O4&g-C3N4 Zn(Ⅱ) 1.0 200 6.0 1 42.0 External surface complexation, Lewis acid-base interaction 139
Pb(Ⅱ) 137.0
Internal surface complexation, Lewis acid-base interaction
Cd(Ⅱ) 102.0
g-C3N4 Pb(Ⅱ) 0.2 10 5.0 7 151 65.6 Surface complexation,
Ion exchange
44
aniline 30 4.0 - 71.9 Electrostatic interaction,
π-π interaction
BC@C3N4 MB 0.5 5 8 18.6 Electrostatic interaction 140
g-C3N4/β-CD Methyl orange 0.3 20 3.5 20 - 67.9 Hydrogen bond,
π-π interaction
86
Pb(Ⅱ) 0.3 10 5.5 12 - 100.5 Surface complexation,
Electrostatic interaction
l-C3N4/PDA/PEI3 U(Ⅵ) 0.5 40 5.0 15 - 60.5 Surface complexation,
Electrostatic interaction, Coprecipitation
141
g-C3N4@Ni-Mg-
Al-LDH
U(Ⅵ) 0.5 30 5.0 4 - 99.7 External surface
complexation,Ion exchange
142
g-C3N4-550 U(Ⅵ) 0.2 5 5.0 2 65 149.7 Internal surface complexation 147
g-C3N4 nanosheets Eu(Ⅲ) 0.1 20 8.0 7 418 155.0 Internal surface complexation 144
La(Ⅲ) 122.3
Nd(Ⅲ) 132.5
Th(Ⅳ) 185.6
MCN-1-673 PFOS 0.6 280 3.5 - 447 625.0 Electrostatic action,
Hydrophobic action
103
MCN-1-773 487 555.5
MCN-1-873 528 433.7
MCN NPYR 20.0 6000 - - 287 218.4 Electrostatic action 134
MCN-41 - - 1012 84.7
图5 (a)重金属离子在g-C3N4上[125]和(b)U(Ⅵ)在g-C3N4/β-CD上的吸附示意图[126]
Fig. 5 (a) Schematic diagram of heavy metal ions sorption on g-C3N4[125] and (b) U(Ⅵ) sorption on g-C3N4/β-CD[126]
图6 (a)pH、(b)离子强度、(c)共存离子和(d)时间对U(Ⅵ)在g-C3N4-T上吸附效果的影响[147]
Fig. 6 Effect of (a) pH,(b) ionic strength,(c) coexisted ions and(d) time on U(Ⅵ) sorption on g-C3N4-T[147]
图7 不同温度下(a)Pb(Ⅱ)和(b)苯胺在g-C3N4上的吸附等温线;Pb(Ⅱ)和苯胺吸附的(c)lnKd与Ce的线性关系图和(d)lnK0与1/T的线性关系图(其中m/V=0.2 g·L-1,pHPb(Ⅱ)=5.0±0.1,pHaniline=4.0±0.1,I=0.01 M NaClO4)[44]
Fig. 7 Sorption isotherms of(a) Pb(Ⅱ) and(b) aniline on g-C3N4 at different temperatures; Linear plots of(c) lnKd versus Ce and(d) lnK0 versus 1/T for the sorption of Pb(Ⅱ) and aniline(m/V=0.2 g·L-1, pHPb(Ⅱ)=5.0±0.1, pHaniline=4.0±0.1, I=0.01 M NaClO4)[44]
图8 (a)不同吸附时间下(30 min、24 h)Ag在3D-g-CN上的XPS图谱[157];在pH=5.0±0.1下制备的标准样品(UO22+和UO2CO3)和吸附样品(U(Ⅵ))的(b)L3吸收边的EXAFS光谱和(c)傅里叶变换[160]
Fig. 8 (a) XPS analysis of Ag on 3D-g-CN depending on sorption time(30 min, 24 h)[157];(b) The uranium L3-edge EXAFS spectra and(c) Fourier transform for standards(UO22+ and UO2CO3) and adsorption sample(U(Ⅵ)) prepared at pH=5.0±0.1[160]
图9 (a)(g-C3N4)-Pb(Ⅱ)和(b~g)(S-g-C3N4)-Pb(Ⅱ)络合物的优化结构和相应键长示意图[188]
Fig. 9 Schematic diagrams of optimized structure and bond length of(a)(g-C3N4)-Pb(Ⅱ) and(b~g)(S-g-C3N4)-Pb(Ⅱ) complexes[188]
[1]
Yu S J, Wang X X, Yao W, Wang J, Ji Y F, Ai Y J, Alsaedi A, Hayat T, Wang X . Environmental Science & Technology, 2017,51(6):3278. https://www.ncbi.nlm.nih.gov/pubmed/28245121

doi: 10.1021/acs.est.6b06259     URL     pmid: 28245121
[2]
Sun Y, Wu Z Y, Wang X, Ding C, Cheng W, Yu S H, Wang X . Environmental Science & Technology, 2016,50(8):4459. https://www.ncbi.nlm.nih.gov/pubmed/26998856

doi: 10.1021/acs.est.6b00058     URL     pmid: 26998856
[3]
Wang X X, Yu S Q, Wu Y H, Pang H W, Yu S J, Chen Z S, Hou J, Alsaedi A, Hayat T, Wang S H . Chemical Engineering Journal, 2018,342:321.
[4]
Wang X X, Liu Y, Pang H W, Yu S J, Ai Y J, Ma X Y, Song G, Hayat T, Alsaedi A, Wang X K . Chemical Engineering Journal, 2018,344:380. https://linkinghub.elsevier.com/retrieve/pii/S1385894718304650

doi: 10.1016/j.cej.2018.03.107     URL    
[5]
Pang H W, Wu Y H, Huang S Y, Ding C C, Li S, Wang X X, Yu S J, Chen Z S, Song G, Wang X K . Inorganic Chemistry Frontiers, 2018,5:2657.
[6]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K . Environmental Science & Technology, 2016,50(14):7290. https://www.ncbi.nlm.nih.gov/pubmed/27331413

doi: 10.1021/acs.est.6b01897     URL     pmid: 27331413
[7]
Yang S T, Guo Z Q, Sheng G D, Wang X K . The Science of the Total environment, 2012,420:214. https://www.ncbi.nlm.nih.gov/pubmed/22330423

doi: 10.1016/j.scitotenv.2012.01.018     URL     pmid: 22330423
[8]
Wu Y H, Pang H W, Yao W, Wang X X, Yu S J, Yu Z M, Wang X K . Science Bulletin, 2018,63:831.
[9]
Ding C C, Cheng W C, Wang X X, Wu Z Y, Sun Y B, Chen C L, Wang X K, Yu S H . Journal of Hazardous Materials, 2016,313:253. https://www.ncbi.nlm.nih.gov/pubmed/27108273

doi: 10.1016/j.jhazmat.2016.04.002     URL     pmid: 27108273
[10]
陆克源(Lu K Y), 于红(Yu H), 安振涛(An Z T), 陈家镛(Chen J Y) . 化学进展 (Progress in Chemistry), 1998,10(3):344.
[11]
Cheng W C, Ding C C, Wang X X, Wu Z Y, Sun Y B, Yu S H, Hayat T, Wang X K . Chemical Engineering Journal, 2016,293:311. https://linkinghub.elsevier.com/retrieve/pii/S1385894716301747

doi: 10.1016/j.cej.2016.02.073     URL    
[12]
Song W C, Wang X X, Wen T, Yu S J, Zou Y D, Sun Y B, Hayat T, Wang X K . ACS Omega, 2016,1(5):899. https://www.ncbi.nlm.nih.gov/pubmed/30023494

doi: 10.1021/acsomega.6b00260     URL     pmid: 30023494
[13]
Wang P Y, Yin L, Wang X X, Zhao G X, Yu S J, Song G, Xie J, Alsaedi A, Hayat T, Wang X K . Journal of Environmental Management, 2018,217:468. https://www.ncbi.nlm.nih.gov/pubmed/29631236

doi: 10.1016/j.jenvman.2018.03.112     URL     pmid: 29631236
[14]
Sun Y B, Ding C C, Cheng W C, Wang X K . Journal of Hazardous Materials, 2014,280:399. 463b5645-aa5d-4cc8-9347-a92989dab388http://dx.doi.org/10.1016/j.jhazmat.2014.08.023

doi: 10.1016/j.jhazmat.2014.08.023     URL    
[15]
Jin Z X, Wang X X, Sun Y B, Ai Y J, Wang X K . Environmental Science & Technology, 2015,49(15):9168. https://www.ncbi.nlm.nih.gov/pubmed/26161689

doi: 10.1021/acs.est.5b02022     URL     pmid: 26161689
[16]
Song W C, Yang T T, Wang X X, Sun Y B, Ai Y J, Sheng G D, Hayat T, Wang X K . Environmental Science Nano, 2016,3(6):1318.
[17]
Zhang S W, Zeng M Y, Li J X, Li J, Xu J Z, Wang X K . Journal of Materials Chemistry A, 2014,2(12):4391.
[18]
Ali I . Chemical Reviews, 2012,112(10):5073. https://www.ncbi.nlm.nih.gov/pubmed/22731247

doi: 10.1021/cr300133d     URL     pmid: 22731247
[19]
Yu S J, Wang X X, Yang S T, Sheng G D, Alsaedi A, Hayat T, Wang X K . Science China Chemistry, 2017,60(2):170.
[20]
Xie B H, Shan C, Xu Z, Li X C, Zhang X L, Chen J J, Pan B C . Chemical Engineering Journal, 2016,308:791.
[21]
Zanacic E, Stavrinides J, McMartin D W . Water Research, 2016,104:397. https://www.ncbi.nlm.nih.gov/pubmed/27576158

doi: 10.1016/j.watres.2016.08.043     URL     pmid: 27576158
[22]
Yu S J, Wang X X, Pang H W, Zhang R, Song W C, Fu D, Hayat T, Wang X K . Chemical Engineering Journal, 2018,333:343.
[23]
Yu S J, Yin L, Pang H W, Wu Y H, Wang X X, Zhang P, Hu B W, Chen Z S, Wang X K . Chemical Engineering Journal, 2018,352:360.
[24]
Huang R, McPhedran K N, Sun N, Chelme-Ayala P, Gamal E M . Chemosphere, 2016,146:472. https://www.ncbi.nlm.nih.gov/pubmed/26741553

doi: 10.1016/j.chemosphere.2015.12.054     URL     pmid: 26741553
[25]
Sheng G D, Yang P J, Tang Y N, Hu Q Y, Li H, Ren X M, Hu B W, Wang X K, Huang Y Y . Applied Catalysis B Environmental, 2016,193:189. https://linkinghub.elsevier.com/retrieve/pii/S0926337316303010

doi: 10.1016/j.apcatb.2016.04.035     URL    
[26]
Pang H W, Huang S Y, Wu Y H, Yang D X, Wang X X, Yu S J, Chen Z S, Alsaedi A, Hayat T, Wang X K . Inorganic Chemistry Frontiers, 2018,5(10):2399. http://xlink.rsc.org/?DOI=C8QI00253C

doi: 10.1039/C8QI00253C     URL    
[27]
Mazur L P, Pozdniakova T A, Mayer D A, Boaventura R A, Vilar V J . Water Research, 2015,90:354. https://www.ncbi.nlm.nih.gov/pubmed/26766159

doi: 10.1016/j.watres.2015.12.027     URL     pmid: 26766159
[28]
Farhat N M, Vrouwenvelder J S, Van Loosdrecht M C, Bucs S S, Staal M . Water Research, 2016,103:149. https://www.ncbi.nlm.nih.gov/pubmed/27450353

doi: 10.1016/j.watres.2016.07.015     URL     pmid: 27450353
[29]
Yu S J, Wang X X, Chen Z S, Tan X L, Wang H Q, Hu J, Alsaedi A, Alharbi N S, Guo W, Wang X K . Chemical Engineering Journal, 2016,302:77. https://linkinghub.elsevier.com/retrieve/pii/S1385894716306660

doi: 10.1016/j.cej.2016.05.043     URL    
[30]
Yu S J, Wang J, Song S, Sun K Y, Li J, Wang X X, Chen Z S, Wang X K . Science China Chemistry, 2017,60(3):415. http://link.springer.com/10.1007/s11426-016-0420-8

doi: 10.1007/s11426-016-0420-8     URL    
[31]
Bedin K C, Martins A C, Cazetta A L, Pezoti O, Almeida V C . Chemical Engineering Journal, 2016,286:476. https://linkinghub.elsevier.com/retrieve/pii/S1385894715015120

doi: 10.1016/j.cej.2015.10.099     URL    
[32]
Sun Y B, Wang X X, Ai Y J, Yu Z, Huang W, Chen C L, Hayat T, Alsaedi A, Wang X . Chemical Engineering Journal, 2016,310:292. https://linkinghub.elsevier.com/retrieve/pii/S1385894716315315

doi: 10.1016/j.cej.2016.10.122     URL    
[33]
Yu S Q, Wang X X, Ning S Y, Chen Z S, Wang X K . Radiochimica Acta, 2018, DOI: org/10.1515/ract-2018-3061. https://www.ncbi.nlm.nih.gov/pubmed/25382874

doi: 10.1524/ract.2012.1964     URL     pmid: 25382874
[34]
Wang X X, Sun Y B, Alsaedi A, Hayat T, Wang X K . Chemical Engineering Journal, 2015,264:570. https://linkinghub.elsevier.com/retrieve/pii/S1385894714016040

doi: 10.1016/j.cej.2014.11.136     URL    
[35]
Krajňák A, Pivarčiová L, Rosskopfová O, Galamboš M, Rajec P . Journal of Radioanalytical & Nuclear Chemistry, 2015,304(2):587.
[36]
Yao W, Yu S J, Wang J, Zou Y D, Lu S, Ai Y J, Alharbi N S, Alsaedi A, Hayat T, Wang X K . Chemical Engineering Journal, 2017,307(1):476. https://linkinghub.elsevier.com/retrieve/pii/S1385894716312098

doi: 10.1016/j.cej.2016.08.117     URL    
[37]
王祥学(Wang X X), 庞宏伟(Pang H W), 吴忆涵(Wu Y H), 于淑君(Yu S J), 宋刚(Song G), 马宵(Ma X), 许佩瑶(Xu P Y) . 中国科学: 化学( Scientia Sinica Chemica), 2018, DOI: 10.1360/N032018-00133.
[38]
Song W C, Liu M C, Hu R, Tan X L, Li J X . Chemical Engineering Journal, 2014,246(16):268. https://linkinghub.elsevier.com/retrieve/pii/S1385894714002630

doi: 10.1016/j.cej.2014.02.101     URL    
[39]
Zong P F, Wang S F, Zhao Y L, Wang H, Pan H, He C H . Chemical Engineering Journal, 2013,220(11):45. https://linkinghub.elsevier.com/retrieve/pii/S1385894713000788

doi: 10.1016/j.cej.2013.01.038     URL    
[40]
王苏菲(Wang S F), 于淑君(Yu S J), 吴忆涵(Wu Y H), 庞宏伟(Pang H W), 陈中山(Chen Z S), 王祥学(Wang X X) . 中国科学: 化学( Scientia Sinica Chemica), 2018, DOI: 10.1360/N032018-00125.
[41]
Hu B W, Hu Q Y, Xu D, Chen C G . Separation & Purification Technology, 2017,175:140.
[42]
Yu S J, Liu Y, Wang X X, Zhang R, Chen Z S, Ai Y J, Chen Z, Zhao G X, Wang X K . Environmental Pollution. 2018,242:1. https://www.ncbi.nlm.nih.gov/pubmed/29957540

doi: 10.1016/j.envpol.2018.06.031     URL     pmid: 29957540
[43]
Wang J, Chen C L . Bioresource Technology, 2014,160(5):129. https://linkinghub.elsevier.com/retrieve/pii/S0960852413019500

doi: 10.1016/j.biortech.2013.12.110     URL    
[44]
Hu R, Wang X K, Dai S, Shao D D, Hayat T, Alsaedi A . Chemical Engineering Journal, 2015,260(3):469. https://linkinghub.elsevier.com/retrieve/pii/S1385894714011991

doi: 10.1016/j.cej.2014.09.013     URL    
[45]
Zhang Y Y, Zhou Z X, Shen Y F, Zhou Q, Wang J H, Liu A, Liu S Q, Zhang Y J . ACS Nano, 2016,10(9):9036. https://www.ncbi.nlm.nih.gov/pubmed/27608277

doi: 10.1021/acsnano.6b05488     URL     pmid: 27608277
[46]
Liebig J V . Ann. Pharm., 1834,10:10.
[47]
Liu A Y, Cohen M L . Science, 1989,245(4920):841. https://www.ncbi.nlm.nih.gov/pubmed/17773359

doi: 10.1126/science.245.4920.841     URL     pmid: 17773359
[48]
Teter D M, Hemley R J . Science, 1996,271(5245):53. https://www.sciencemag.org/lookup/doi/10.1126/science.271.5245.53

doi: 10.1126/science.271.5245.53     URL    
Zheng Y, Lin L H, Wang B, Wang X C . Angew. Chem. Int. Ed. 2015,54(44):12868.
[50]
Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P . Chemical Reviews, 2016,116(12):7159. https://www.ncbi.nlm.nih.gov/pubmed/27199146

doi: 10.1021/acs.chemrev.6b00075     URL     pmid: 27199146
[51]
Vinu A . Advanced Functional Materials, 2008,18(5):816.
[52]
Kouvetakis J, Todd M, Wilkens B, Bandari A, Cave N . Chemistry of Materials, 1994,6(6):811.
[53]
Li H, Wang L Z, Liu Y D, Lei J Y, Zhang J L . Research on Chemical Intermediates, 2016,42(5):3979.
[54]
Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller J O, Schloegl R, Carlsson J M . Cheminform, 2009,40(9):4893.
[55]
Ong W J, Putri L K, Tan L L, Chai S P, Yong S T . Applied Catalysis B Environmental, 2016,180:530.
[56]
Ong W J, Tan L L, Chai S P, Yong S T, Mohamed A R . Nano Energy, 2015,13:757.
[57]
Tan L L, Ong W J, Chai S P, Mohamed A R . Cheminform, 2014,45(3):1.
[58]
Ong W J, Putri L K, Tan Y C, Tan L L, Li N, Ng Y H, Wen X M, Chai S P . Nano Research, 2017,10(5):1673.
[59]
Zhao Z W, Sun Y J, Dong F . Nanoscale, 2014,7(1):15. https://www.ncbi.nlm.nih.gov/pubmed/25407808

doi: 10.1039/c4nr03008g     URL     pmid: 25407808
[60]
楚增勇(Chu Z Y), 原博(Yuan B), 颜廷楠(Yan T N) . 无机材料学报 (Journal of Inorganic Materials), 2014,29(8):785.
[61]
Ruan L W, Xu G S, Chen H Y, Yuan Y P, Jiang X, Lu Y X, Zhu Y J . Journal of Physics & Chemistry of Solids, 2014,75(12):1324.
[62]
Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z . Energy & Environmental Science, 2012,5(5):6717.
[63]
Zambon A, Mouesca J M, Gheorghiu C, Bayle P A, Pécaut J, Claeysbruno M, Gambarelli S, Dubois L . Chemical Science, 2015,7(2):945. https://www.ncbi.nlm.nih.gov/pubmed/29896365

doi: 10.1039/c5sc02992a     URL     pmid: 29896365
[64]
Zhao Y, Zhao F, Wang X P, Xu C Y, Zhang Z P, Shi G Q, Qu L T . Angew. Chem. Int. Ed., 2015,53(50):13934. https://www.ncbi.nlm.nih.gov/pubmed/25381722

doi: 10.1002/anie.201409080     URL     pmid: 25381722
[65]
Kroke E, Schwarz M, Horathbordon E, Kroll P, Noll B, Norman A D . New Journal of Chemistry, 2002,26(5):508.
[66]
Kim M, Sohn K, And H B N, Hyeon T . Nano Letters, 2002,2(12):1383.
[67]
Groenewolt M, Antonietti M . Advanced Materials, 2005,17(14):1789.
[68]
Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S . Angew. Chem. Int. Ed., 2004,43(43):5785. https://www.ncbi.nlm.nih.gov/pubmed/15523736

doi: 10.1002/anie.200461051     URL     pmid: 15523736
[69]
Thomas A, Goettmann F, Antonietti M . Chemistry of Materials, 2008,20(3):738.
[70]
Goettmann F, Fischer A, Antonietti M, Thomas A . Angew. Chem. Int. Ed., 2006,45(27):4467. https://www.ncbi.nlm.nih.gov/pubmed/16770823

doi: 10.1002/anie.200600412     URL     pmid: 16770823
[71]
Jun Y S, Hong W H, Antonietti M, Thomas A . Advanced Materials, 2009,21(42):4270.
[72]
Park S S, Chu S W, Xue C, Zhao D, Ha C S . Journal of Materials Chemistry, 2011,21(29):10801. http://xlink.rsc.org/?DOI=c1jm10849b

doi: 10.1039/c1jm10849b     URL    
[73]
Jin X, Balasubramanian V V, Selvan S T, Sawant D P, Chari M A, Lu G Q, Vinu A . Angew. Chem. Int. Ed., 2009,48(42):7884. https://www.ncbi.nlm.nih.gov/pubmed/19739172

doi: 10.1002/anie.200903674     URL     pmid: 19739172
[74]
Li Q, Yang J P, Feng D, Wu Z X, Wu Q L, Park S S, Ha C S, Zhao D Y . Nano Research, 2010,3(9):632. http://link.springer.com/10.1007/s12274-010-0023-7

doi: 10.1007/s12274-010-0023-7     URL    
[75]
Srinivasu P, Alam S, Balasubramanian V V, Velmathi S, Sawant D P, Böhlmann W, Mirajkar S P, Ariga K, Halligudi S B, Vinu A . Advanced Functional Materials, 2008,18(4):640.
[76]
Srinivasu P, Vinu A, Hishita S, Sasaki T, Ariga K, Mori T . Microporous & Mesoporous Materials, 2008,108(1):340. https://www.ncbi.nlm.nih.gov/pubmed/19190761

doi: 10.1016/j.micromeso.2007.04.055     URL     pmid: 19190761
[77]
Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y . Advanced Materials, 2005,17(13):1648.
[78]
范功端(Fan G D), 林茹晶(Lin R J), 苏昭越(Su Z Y), 许仁星(Xu R X) . 化学进展 (Progress in Chemistry), 2016,28(12):1753.
[79]
Antonietti M . Current Opinion in Colloid & Interface Science, 2001,6(3):244.
[80]
Chen D H, Li Z, Wan Y, Tu X J, Shi Y F, Chen Z X, Shen W, Yu C Z, Tu B, Zhao D Y . Journal of Materials Chemistry, 2006,16(16):1511. http://xlink.rsc.org/?DOI=b517975k

doi: 10.1039/b517975k     URL    
[81]
Liang C, Li Z, Dai S . Angew. Chem. Int. Ed., 2008,120(20):3754. http://doi.wiley.com/10.1002/%28ISSN%291521-3757

doi: 10.1002/(ISSN)1521-3757     URL    
[82]
Wang Y, Wang X C, Antonietti M, Zhang Y . Chemsuschem, 2010,3(4):435. https://www.ncbi.nlm.nih.gov/pubmed/20191634

doi: 10.1002/cssc.200900284     URL     pmid: 20191634
[83]
Antonietti M, Kuang D, Smarsly B, Zhou Y . Angew. Chem. Int. Ed., 2004,116(38):5096.
[84]
Lee J S, Wang X, Luo H, Dai S . Advanced Materials, 2010,22(9):1004. https://www.ncbi.nlm.nih.gov/pubmed/20217829

doi: 10.1002/adma.200903403     URL     pmid: 20217829
[85]
Wang Y, Zhang J S, Wang X C, Antonietti M, Li H . Angew. Chem. Int. Ed., 2010,49(19):3356. https://www.ncbi.nlm.nih.gov/pubmed/20340148

doi: 10.1002/anie.201000120     URL     pmid: 20340148
[86]
Zou Y D, Wang P Y, Yao W, Wang X X, Liu Y H, Yang D X, Wang L D, Hou J, Alsaedi A, Hayat T, Wang X K . Chemical Engineering Journal, 2017,330:573.
[87]
Zou Y D, Wang X X, Ai Y J, Liu Y H, Ji Y, Wang H Q, Hayat T, Alsaedi A, Hu W, Wang X K . Journal of Materials Chemistry A, 2016,4(37):14170.
[88]
Shi L, Liang L, Ma J, Wang F X, Sun J . Dalton Transactions, 2014,43(19):7236. https://www.ncbi.nlm.nih.gov/pubmed/24681708

doi: 10.1039/c4dt00087k     URL     pmid: 24681708
[89]
Zhang J S, Chen X F, Takanabe K, Maeda K, Domen K, Epping J D, Fu X, Antonietti M, Wang X . Angew. Chem. Int. Ed., 2010,122(2):451.
[90]
Wang S P, Li C J, Wang T, Zhang P, Li A, Gong J L . Journal of Materials Chemistry A, 2014,2(9):2885.
[91]
Thomas A, Fischer A, Goettmann F, Antonietti M, Mueller J O, Schloegl R, Carlsson J M . Journal of Materials Chemistry, 2008,18(41):4893.
[92]
Yan S C, Li Z S, Zou Z G . Langmuir, 2009,25(17):10397. https://www.ncbi.nlm.nih.gov/pubmed/19705905

doi: 10.1021/la900923z     URL     pmid: 19705905
[93]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M , Nature Materials, 2009,8(1):76. https://www.ncbi.nlm.nih.gov/pubmed/18997776

doi: 10.1038/nmat2317     URL     pmid: 18997776
[94]
Yu J G, Wang S H, Cheng B, Lin Z, Huang F . Catalysis Science & Technology, 2013,3(7):1782.
[95]
Guo Q X, Xie Y, Wang X J, Zhang S Y, Hou T, Lv S . Chemical Communications, 2003,10(1):26.
[96]
Cui Y J, Huang J H, Fu X Z, Wang X C . Catalysis Science & Technology, 2012,2(7):1396.
[97]
Zhang Y W, Liu J H, Wu G, Chen W . Nanoscale, 2012,4(17):5300. 46004e77-e3d4-4104-af26-17e2125d5f67http://dx.doi.org/10.1039/c2nr30948c

doi: 10.1039/c2nr30948c     URL    
[98]
Dong F, Sun Y J, Wu L W, Fu M, Wu Z B . Catalysis Science & Technology, 2012,2(7):1332.
[99]
Dong F, Wang Z Y, Sun Y J, Ho W K, Zhang H D . Journal of Colloid Interface Science, 2013,401(8):70. https://linkinghub.elsevier.com/retrieve/pii/S0021979713002798

doi: 10.1016/j.jcis.2013.03.034     URL    
[100]
Gao H H, Yang H C, Xu J Z, Zhang S W, Li J X . Small, 2018, DOI: 10.1002/smll.201801353.
[101]
Zhang S W, Gao H H, Huang Y S, Wang X X, Hayat T, Li J X, Xu X J, Wang X K . Environmental Science: Nano, 2018,5(5):1179.
[102]
Zhang S W, Gao H H, Liu X, Huang Y S, Xu X J, Alharbi N S, Hayat T, Li J X . ACS Applied Materials & Interfaces, 2016,8(51):35138. https://www.ncbi.nlm.nih.gov/pubmed/27739686

doi: 10.1021/acsami.6b09260     URL     pmid: 27739686
[103]
Yan T T, Chen H, Wang X, Jiang F . RSC Advances, 2013,3(44):22480.
[104]
Zhang X S, Hu J Y, Jiang H . Chemical Engineering Journal, 2014,256(6):230.
[105]
Long B H, Lin J L, Wang X C . Journal of Materials Chemistry A, 2014,2(9):2942.
[106]
Shi L, Liang L, Wang F X, Ma J M, Sun J . Catalysis Science & Technology, 2014,4(4):207.
[107]
Ho W K, Zhang Z Z, Xu M K, Zhang X W, Wang X X, Yu H . Applied Catalysis B Environmental, 2015,179:106. https://linkinghub.elsevier.com/retrieve/pii/S0926337315002556

doi: 10.1016/j.apcatb.2015.05.010     URL    
[108]
Gu Q, Gao Z W, Zhao H G, Lou Z Z, Liao Y S, Xue C . RSC Advances, 2015,5(61):49317.
[109]
He F, Chen G, Zhou Y S, Yu Y G, Zheng Y, Hao S . Chemical Communications, 2015,51(90):16244. https://www.ncbi.nlm.nih.gov/pubmed/26399299

doi: 10.1039/c5cc06713h     URL     pmid: 26399299
[110]
Wang Z, Guan W, Sun Y, Dong F, Zhou Y, Ho W K . Nanoscale, 2015,7(6):2471. https://www.ncbi.nlm.nih.gov/pubmed/25567239

doi: 10.1039/c4nr05732e     URL     pmid: 25567239
[111]
Cui Y J, Zhang G G, Lin Z Z, Wang X C . Applied Catalysis B Environmental, 2015,181:413.
[112]
Deng Q F, Liu L, Lin X Z, Du G H, Liu Y P, Yuan Z Y . Chemical Engineering Journal, 2012,203:63.
[113]
Zhang J G, Chen Y, Wang X D . Energy & Environmental Science, 2015,8(11):3092.
[114]
Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R . Chemosphere, 2011,82(8):1178. https://www.ncbi.nlm.nih.gov/pubmed/21193219

doi: 10.1016/j.chemosphere.2010.11.075     URL     pmid: 21193219
[115]
冯新斌(Feng X B), 仇广乐(Chou G L), 付学吾(Fu X W), 何天容(He T R), 李平(Li P), 王少锋(Wang S F) . 化学进展 (Progress in Chemistry), 2009,21(2):436.
[116]
Rao M M, Ramana D K, Seshaiah K, Wang M C, Chien S W . Journal of Hazardous Materials, 2009,166(2):1006. https://www.ncbi.nlm.nih.gov/pubmed/19135782

doi: 10.1016/j.jhazmat.2008.12.002     URL     pmid: 19135782
[117]
Nassar N N . Journal of Hazardous Materials, 2010,184(1/3):538. https://www.ncbi.nlm.nih.gov/pubmed/20837379

doi: 10.1016/j.jhazmat.2010.08.069     URL     pmid: 20837379
[118]
Yang S T, Zhao D L, Zhang H, Lu S S, Chen L, Yu X J . Journal of Hazardous Materials, 2010,183(1):632.
[119]
Chen H, Yan T, Jiang F . Journal of the Taiwan Institute of Chemical Engineers, 2014,45(4):1842. https://linkinghub.elsevier.com/retrieve/pii/S1876107014000881

doi: 10.1016/j.jtice.2014.03.005     URL    
[120]
Lee E Z, Jun Y S, Hong W H, Thomas A, Jin M M . Angew. Chem. Int. Ed., 2010,49(50):9706. https://www.ncbi.nlm.nih.gov/pubmed/21077076

doi: 10.1002/anie.201004975     URL     pmid: 21077076
[121]
张文(Zhang W), 叶钢(Ye G), 陈靖(Chen J) . 化学进展 (Progress in Chemistry), 2012,24(12):2330. 5c999aed-ce13-4296-8293-1934d4637e07http://www.progchem.ac.cn//CN/abstract/abstract11002.shtml
[122]
韦悦周(Wei Y Z) . 化学进展 (Progress in Chemistry), 2011,23(07):1272.
[123]
顾忠茂(Gu Z M), 柴之芳(Chai Z F) . 化学进展 (Progress in Chemistry), 2011,23(7):1263. 18f26a4e-648d-4a9b-8093-df94040d8648http://www.progchem.ac.cn//CN/abstract/abstract10626.shtml
[124]
Dickinson M, Scott T B . Journal of Hazardous Materials, 2010,178(1-3):171. https://www.ncbi.nlm.nih.gov/pubmed/20129731

doi: 10.1016/j.jhazmat.2010.01.060     URL     pmid: 20129731
[125]
Shen C C, Chen C L, Wen T, Zhao Z W, Wang X K, Xu A W . Journal of Colloid Interface Science, 2015,456:7. https://www.ncbi.nlm.nih.gov/pubmed/26079526

doi: 10.1016/j.jcis.2015.06.004     URL     pmid: 26079526
[126]
Hao X, Chen R R, Liu Q, Liu J Y, Zhang H S, Yu J, Li Z S, Wang J . Inorganic Chemistry Frontiers, 2018,5(9):2218.
[127]
Lugovaya Y R, Orlova, K N, Litovkin S V, Malchik A G, Gaydamak M A . Materials Science and Engineering, 2016,127(1):12026.
[128]
Li W, Liu J, Zhao D Y . Nature Reviews Materials, 2016,1(6):16023.
[129]
Korichi S, Bensmaili A . Journal of Hazardous Materials, 2009,169(1):780.
[130]
Xie S B, Yang J, Chen C, Zhang X J, Wang Q L, Zhang C . Journal of Environmental Radioactivity, 2008,99(1):126. https://www.ncbi.nlm.nih.gov/pubmed/17765369

doi: 10.1016/j.jenvrad.2007.07.003     URL     pmid: 17765369
[131]
崔言娟(Cui Y J), 王愉雄(Wang Y X), 王浩(Wang H), 陈芳艳(Chen F Y) . 化学进展 (Progress in Chemistry), 2016,28(04):428.
[132]
Haque E, Jun J W, Talapaneni S N, Vinu A, Jhung S H . Journal of Materials Chemistry, 2010,20(48):10801.
[133]
Jiang B, Zheng J T, Lu X, Liu Q, Wu M B, Yan Z, Qiu S, Xue Q Z, Wei Z X, Xiao H J . Chemical Engineering Journal, 2013,215/216:969.
[134]
Sam M S, Lintang H O, Sanagi M M, Lee S L, Yuliati L . Materials Science and Engineering, 2014,124:357.
[135]
Haque E, Khan N A, Talapaneni S N, Vinu A, Jegal J G, Jhung S H . Bulletin- Korean Chemical Society, 2010,31(6):1638.
[136]
Liao Q, Yan S R, Linghu W S, Zhu Y L, Shen R P, Ye F, Feng G F, Dong L J, Asiri A M, Marwani H M, Xu D, Wu X L, Li X . Journal of Molecular Liquids, 2018,258:40.
[137]
Liao Q, Zou D S, Pan W, Linghu W S, Shen R P, Jin Y, Feng G F, Li X, Ye F, Asiri A M, Marwani H M, Zhu Y L, Wu X L, Dong W H . Journal of Molecular Liquids, 2018,258:275.
[138]
Lin S H, Juang R S . Journal of Environmental Management, 2009,90(3):1336. https://www.ncbi.nlm.nih.gov/pubmed/18995949

doi: 10.1016/j.jenvman.2008.09.003     URL     pmid: 18995949
[139]
Guo S Z, Duan N, Dan Z G, Chen G C, Shi F F, Gao W B . Journal of Molecular Liquids, 2018,258:225.
[140]
Pi L, Zhou W C, Zhu H, Xiao W, Wang D H, Mao X H . Applied Surface Science, 2015,358:231.
[141]
Tsai S Y, Juang R S . Journal of Hazardous Materials, 2006,138(1):125. https://www.ncbi.nlm.nih.gov/pubmed/16806688

doi: 10.1016/j.jhazmat.2006.05.044     URL     pmid: 16806688
[142]
Zheng H B, Ding J, Zheng S J, Zhu G T, Yuan B F, Feng Y Q . Talanta, 2016,148:46. https://www.ncbi.nlm.nih.gov/pubmed/26653422

doi: 10.1016/j.talanta.2015.10.059     URL     pmid: 26653422
[143]
Zheng Y Z, Qi M L, Fu R N . Journal of Chromatography A, 2016,1454:107. https://www.ncbi.nlm.nih.gov/pubmed/27266332

doi: 10.1016/j.chroma.2016.05.073     URL     pmid: 27266332
[144]
Liao Q, Zou D S, Pan W, Linghu W S, Shen R P, Li X, Asiri A M, Alamry K A, Sheng G D, Zhan L, Wu X L . Journal of Molecular Liquids, 2018,252:351.
[145]
Wang M, Cui S H, Yang X D, Li S N . Talanta, 2015,132:922. https://www.ncbi.nlm.nih.gov/pubmed/25476398

doi: 10.1016/j.talanta.2014.08.071     URL     pmid: 25476398
[146]
Wang M M, Qiu J, Tao X Q, Wu C P, Cui W B, Liu Q, Lu S S . Journal of Radioanalytical & Nuclear Chemistry, 2011,288(3):895.
[147]
Zhang C L, Liu Y H, Li X, Chen H X, Wen T, Jiang Z H, Ai Y J, Sun Y, Hayat T, Wang X K . Chemical Engineering Journal, 2018,346:406.
[148]
Yin L, Song S, Wang X X, Niu F L, Ma R, Yu S J, Wen T, Chen Y T, Hayat T, Aisaedi A, Wang X K . Environmental Pollution, 2018,238:725. https://www.ncbi.nlm.nih.gov/pubmed/29625297

doi: 10.1016/j.envpol.2018.03.092     URL     pmid: 29625297
[149]
Yin L, Wang P Y, Wen T, Yu S J, Wang X X, Hayat T, Alsaedi A, Wang X K . Environmental Pollution, 2018,226:125. https://www.ncbi.nlm.nih.gov/pubmed/28419919

doi: 10.1016/j.envpol.2017.03.078     URL     pmid: 28419919
[150]
Ho Y S . Journal of Applied Polymer Science, 2013,131(4):1001.
[151]
An F Q, Feng X Q, Gao B J . Chemical Engineering Journal, 2009,151(1):183.
[152]
Rafatullah M, Sulaiman O, Hashim R, Ahmad A . Journal of Hazardous Materials, 2009,170(2):969. https://linkinghub.elsevier.com/retrieve/pii/S0304389409008164

doi: 10.1016/j.jhazmat.2009.05.066     URL    
[153]
Yang X X, Guan Q X, Li W . Journal of Environmental Management, 2011,92(11):2939. https://www.ncbi.nlm.nih.gov/pubmed/21813231

doi: 10.1016/j.jenvman.2011.07.006     URL     pmid: 21813231
[154]
Tang W W, Zeng G M, Gong J L, Liu Y, Wang X Y, Liu Y Y, Liu Z F, Chen L, Zhang X R, Tu D Z . Chemical Engineering Journal, 2012,211:470. f1a4e90f-b49d-4788-a788-498b261b430bhttp://dx.doi.org/10.1016/j.cej.2012.09.102

doi: 10.1016/j.cej.2012.09.102     URL    
[155]
Ajmal M, Rao R A, Ahmad J, Anwar S, Ahmad R . Journal of Environmental Engineering and Science, 2008,50(1):7.
[156]
Liu F L, Wang J H, Li L Y, Shao Y, Xu Z Y, Zheng S R . Journal of Chemical & Engineering Data, 2009,54(11):3043.
[157]
Lee S U, Jun Y S, Lee E Z, Heo N S, Hong W H, Huh Y S, Chang Y K . Carbon, 2015,95:58.
[158]
Ferraria A M, Carapeto A P, Rego A M B D . Vacuum, 2012,86(12):1988.
[159]
Shu T, Yang W J, Li K X, Yan L S, Dai Y H, Guo H Q . Energy & Environment Focus, 2015,4(2):107. https://www.ncbi.nlm.nih.gov/pubmed/20038498

doi: 10.1186/1479-7364-4-2-107     URL     pmid: 20038498
[160]
Wang P Y, Yin L, Wang J, Xu C, Liang Y, Yao W, Wang X X, Yu S J, Chen J, Sun Y B, Wang X K . Chemical Engineering Journal, 2017,326:863.
[161]
Bargar J R, Lenhart J J, Davis J A, Reitmeyer R . Geochimica et Cosmochimica Acta, 2000,64(16):2737.
[162]
Catalano J G, Brown G E . Geochimica et Cosmochimica Acta, 2006,69(12):2995.
[163]
Hu B W, Hu Q Y, Chen C G, Sun Y B, Xu D, Sheng G D . Chemical Engineering Journal, 2017,322:66.
[164]
Arai Y, Marcus M A, Tamura N, Davis J A, Zachara J M . Environmental Science & Technology, 2007,41(13):4633. https://www.ncbi.nlm.nih.gov/pubmed/17695908

doi: 10.1021/es062196u     URL     pmid: 17695908
[165]
Catalano J G, Brown G E . American Mineralogist, 2004,89(7):1004.
[166]
Yu S J, Wang X X, Ai Y J, Tan X L, Hayat T, Hu W, Wang X K . Journal of Materials Chemistry A, 2016,4(15):5654.
[167]
Li X, Xing J L, Zhang C L, Han B, Zhang Y H, Wen T, Leng R, Jiang Z H, Ai Y J, Wang X K . ACS Sustainable Chemistry & Engineering, 2018,6(8):10606.
[1] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[7] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[8] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[9] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[10] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[11] 何安恩, 解姣姣, 苑春刚. 大气颗粒物重金属形态分析[J]. 化学进展, 2021, 33(9): 1627-1647.
[12] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[13] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[14] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[15] 陈冠益, 韩克旋, 刘彩霞, 旦增, 布多. 污泥中重金属处理方法[J]. 化学进展, 2021, 33(6): 998-1009.