English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1143-1160 DOI: 10.7536/PC180106 前一篇   后一篇

• 综述 •

酸功能化离子液体固相催化材料的制备及应用

刘文巧1,2, 李臻1*, 夏春谷1   

  1. 1. 中国科学院兰州化学物理研究所苏州研究院 羰基合成与选择氧化国家重点实验室 兰州 730000;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2018-01-12 修回日期:2018-03-12 出版日期:2018-08-15 发布日期:2018-04-09
  • 通讯作者: 李臻 E-mail:zhenli@licp.cas.cn
  • 基金资助:
    国家自然科学基金项目(No.21673259)、江苏省自然科学基金项目(No.BK20171241)、中国科学院青年创新促进会项目(No.2018453)和苏州市科技局前瞻性应用研究计划项目(No.SYG201628)资助

Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials

Wenqiao Liu1,2, Zhen Li1*, Chungu Xia1   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics(LICP), Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-12 Revised:2018-03-12 Online:2018-08-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21673259), the Natural Science Foundation of Jiangsu Province of China(No.BK20171241), the Youth Innovation Promotion Association of CAS(No.2018453), and the Suzhou Science and Technology Bureau of Applied Foundation Research Project(No.SYG201628).
酸功能化离子液体固相催化材料是把酸性离子液体负载到无机载体、有机载体和金属-有机骨架化合物等多种类型的固相材料上,形成一种集酸性离子液体和固相载体性质于一身的新型多相催化材料,具有良好的催化活性,解决了催化剂重复性不好及分离困难等问题,在多种催化过程中发挥重要作用。本文综述了酸功能化离子液体固相催化材料的最新研究进展,重点介绍了基于不同载体的杂化材料的制备方法,及其在烷基化反应、缩醛化反应和酯化反应等多种催化反应中的应用,同时分析了目前应用过程中存在的问题,并对其前景进行了展望。
Acidic ionic liquids hybrid solid catalytic materials are prepared by the immobilization of acidic ionic liquids into inorganic supports, organic supports, metal-organic frameworks and other types of solid materials, which combine the features of acidic ionic liquids with heterogeneous solid supports. These hybrid materials have played an important role in many acid-catalyzed processes, exhibiting not only good catalytic performance but also superior reusabilities. In this review, the latest achievements toward acidic ionic liquids hybrid solid catalytic materials are presented, especially for the preparation methods based on different supports and their catalytic performance in many reactions, such as alkylation, acetalization and esterification. Meanwhile, the existing problems in applications are analyzed, and the development trends and prospects are put forward.
Contents
1 Introduction
2 Immobilization of acidic ionic liquids
2.1 Immobilization of acidic ionic liquids into inorganic support
2.2 Immobilization of acidic ionic liquids into organic polymer support
2.3 Immobilization of acidic ionic liquids into organic-inorganic hybrid materials
3 Applications of acidic ionic liquids hybrid solid catalytic materials
3.1 Alkylation reaction
3.2 Acetal reaction
3.3 Esterification and transesterification
3.4 Condensation reaction
3.5 Multicomponent reaction
3.6 Deep oxidation desulfurization
3.7 Cycloaddition reaction of carbon dioxide
4 Conclusion and outlook

中图分类号: 

()
[1] Welton T. Chem. Rev., 1999, 99:2071.
[2] Davis J H. Chem. Lett., 2004, 33:1072.
[3] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2001, 124(21):5962.
[4] Li D M, Shi F, Peng J J, Guo S, Deng Y Q. J. Org. Chem., 2004, 69(10):3582.
[5] Arfan A, Bazureau J P. Org. Proces. Res. Dev., 2005, 9(6):743.
[6] 王敬娴(Wang J X), 吴芹(Wu Q), 黎汉生(Li H S), 甄彬(Zhen B). 化工进展(Chem. Ind. Eng. Prog.), 2008, 27(10):1574.
[7] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359:710.
[8] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279:548.
[9] Hoffman F, Cornelius M, Morell J, Fröba M. Angew. Chem. Int. Ed., 2006, 45:3216.
[10] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. J. Am. Chem. Soc., 2008, 130:28.
[11] Kang Y S, Risbud S, Rabolt J F, Stroeve P. Chem. Mater., 1996, 8:2209.
[12] Palu D, Robeson L. Polymer, 2008, 49:3187.
[13] Jancar J, Douglas J, Starr F W, Kumar S, Cassagnau P, Lesser A, Sternstain S S, Buehler M. Polymer, 2010, 51:3321.
[14] James S L. Chem. Soc. Rev., 2003, 32:276.
[15] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23:249.
[16] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112:673.
[17] 李雪辉(Li X H), 潘微平(Pan W P). 现代化工(Mod. Chem. Ind.), 2005, 25(12):61.
[18] Kumar P, Vermeiren W, Dath J P, Hoelderich W F. Appl. Catal. A:General., 2006, 304:131.
[19] Amarasekara A S, Owereh O S. Catal. Commun., 2010, 11(13):1072.
[20] Miao J M, Wan H, Shao Y B, Guan G F, Xu B. J. Mol. Catal. A:Chem., 2011, 348(1/2):77.
[21] Safari J, Zarnegar Z. New J. Chem., 2014, 38:358.
[22] Zhang Q, Su H, Luo J, Wei Y Y. Green. Chem., 2012, 14:201.
[23] Yin S S, Sun J, Liu B, Zhang Z H. J. Mater. Chem. A, 2015, 3:4992.
[24] Amarasekara A S, Wiredu B. Curr. Catal., 2013, 2(3):219.
[25] Xu Z J, Wan H, Miao J M, Han M J, Yang C, Guan G F. J. Mol. Catal. A:Chem., 2010, 332:152.
[26] Sugimura R, Qiao K, Tomida D, Yokoyama C. Catal. Commun., 2007, 8:770.
[27] Boroujeni K P, Ghasemi P, Rafienia Z. Monatsh. Chem., 2014, 145:1023.
[28] Kiasat A R, Mouradzadegun A, Saghanezhad S J. Res. Chem. Intermed., 2015, 41:319.
[29] Liang X Z. Kinetics and Catalysis, 2013, 54(6):724.
[30] Xing G Y. Monatsh. Chem., 2013, 144:1369.
[31] Shao Y B, Wan H, Miao J M, Guan G F. Reac. Kinet. Mech. Cat., 2013, 109:149.
[32] Yamada Y, Qiao K, Bao Q X, Tomida D, Nagao D, Konno M, Yokoyama C. Catal. Commun., 2009, 11:227.
[33] Zhao H H, Yu N Y, Wang J Q, Zhuang D Y, Ding Y, Tan R, Yin D H. Microporous and Mesoporous Materials, 2009, 122:240.
[34] Wu Z W, Chen C, Wang L, Wan H, Guan G F. Ind. Eng. Chem. Res., 2016, 55:1833.
[35] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Mardiolaki I. Science, 2005, 309:2040.
[36] Luo Q X, Ji M, Lu M H, Hao C, Qiu J S, Li Y Q. J. Mater. Chem. A, 2013, 1:6530.
[37] Han M J, Gu Z, Chen C, Wu Z W, Que Y G, Wang Q, Wan H, Guan G F. RSC Adv., 2016, 6:37110.
[38] Wu Z W, Chen C, Wan H, Wang L, Li Z, Li B X, Guo Q R, Guan G F. Energy Fuels, 2016, 30:10739.
[39] Wan H, Chen C, Wu Z W, Que Y G, Feng Y, Wang W, Wang L, Guan G F. Chem. Cat. Chem., 2015, 7:441.
[40] DeCastro C, Sauvage E, Valkenberg M H, Hölderich W F. J. Catal., 2000, 196:86.
[41] Wang G J, Yu N Y, Peng L, Tan R, Zhao H H, Yin D H, Qiu H Y, Fu Z H, Yin D L. Catal. Lett., 2008, 123:252.
[42] Vafaeezadeh M, Dizicheh Z B, Hashemi M M. Catal. Commun., 2013, 41:96.
[43] Liang X Z, Xiao H Q, Qi C Z. Fuel Processing Technology, 2013, 110:109.
[44] Liang X Z. Ind. Eng. Chem. Res., 2013, 52:6894.
[45] Wu Y J, Li Z, Xia C G. Ind. Eng. Chem. Res., 2016, 55:1859.
[46] Miao J M, Wan H, Guan G F. Catal. Commun., 2011, 12:353.
[47] Huang J, Jiang T, Gao H X, Han B X, Liu Z M, Wu W Z, Chang Y H, Zhao G Y. Angew. Chem. Int. Ed., 2004, 43:1397.
[48] He L, Wang J Q, Gong Y, Liu Y M, Cao Y, He H Y, Fan K N. Angew. Chem. Int. Ed., 2011, 50:10216.
[49] Maria J C, Avelino C, Sara I. Chem. Rev., 2011, 111:1072.
[50] Wan Y, Wang H Y, Zhao Q F, Miia K, Osamu T, Zhao D Y. J. Am. Chem. Soc., 2009, 131:4541.
[51] Liu F J, Wang L, Sun Q, Zhu L F, Meng X J, Xiao F S. J. Am. Chem. Soc., 2012, 134:16948.
[52] Boroujeni K P, Jafarinasab M. Chin. Chem. Lett., 2012, 23:1067.
[53] Kiasat A R, Mouradzadegun A, Saghanezhad S J. Chin. J. Catal., 2013, 34:1861.
[54] Davoodnia A, Yassaghi G. Chin. J. Catal., 2012, 33:1950.
[55] Zhang Q, Luo J, Wei Y Y. Green Chem., 2010, 12:2246.
[56] Kotadia D A, Soni S S. J. Mol. Catal. A:Chem., 2012, 353/354:44.
[57] Rostamizadeh S, Nojavan M, Aryan R, Azad M. Catal. Lett., 2014, 144:1772.
[58] Wu J X, Gao Y L, Zhang W, Tan Y Y, Tang A M, Men Y, Tang B H J. Appl. Organometal. Chem., 2015, 29:96.
[59] Wu J X, Gao Y L, Zhang W, Tan Y Y, Tang A M, Men Y, Tang B H J. RSC Adv., 2014, 4:58800.
[60] Wu J X, Gao Y L, Zhang W, Tan Y Y, Tang A M, Men Y, Tang B H. J. Appl. Petrochem. Res., 2016, 6:361.
[61] Cai C, Wang H, Han J Y. Applied Surface Science, 2011, 257:9802.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[3] 杨文清, 谢大乐, 程俊, 唐维克, 汪若冰, 冯乙巳. 负载型BINAP-M类催化剂[J]. 化学进展, 2021, 33(10): 1706-1720.
[4] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[5] 李世嘉, 庞尔楠, 郝彩红, 蔡婷婷, 胡胜亮. 固态荧光碳点的制备[J]. 化学进展, 2020, 32(5): 548-561.
[6] 王新之, 王红利, 石峰. 基于多相催化体系构建的醇胺化合成N-烷基胺[J]. 化学进展, 2020, 32(2/3): 162-178.
[7] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[8] 兰兴旺, 白国义. 共价有机框架催化材料:二氧化碳转化与利用[J]. 化学进展, 2020, 32(10): 1482-1493.
[9] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[10] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[11] 王鹏远, 郭昌胜, 高建峰, 徐建. 石墨相氮化碳(g-C3N4)与Bi系复合光催化材料的制备及在环境中的应用[J]. 化学进展, 2017, 29(2/3): 241-251.
[12] 付先彪, 喻桂朋. 共价有机框架材料催化剂[J]. 化学进展, 2016, 28(7): 1006-1015.
[13] 赵新红, 高向平, 郝志鑫, 张晓晓. 多级孔磷酸铝分子筛的合成、表征及催化应用[J]. 化学进展, 2016, 28(5): 686-696.
[14] 闵媛媛, 尚蕴山, 宋宇, 李国栋, 巩雁军. 纳米薄层分子筛的合成与应用[J]. 化学进展, 2015, 27(8): 1002-1013.
[15] 李善建, 冯拉俊. 功能离子液体杂化固相纳米材料的制备及催化应用[J]. 化学进展, 2014, 26(10): 1633-1644.