English
新闻公告
More
化学进展 2016, Vol. 28 Issue (5): 686-696 DOI: 10.7536/PC151141 前一篇   后一篇

• 综述与评论 •

多级孔磷酸铝分子筛的合成、表征及催化应用

赵新红*, 高向平, 郝志鑫, 张晓晓   

  1. 兰州理工大学石油化工学院 兰州 730050
  • 收稿日期:2015-11-01 修回日期:2016-01-01 出版日期:2016-05-15 发布日期:2016-03-25
  • 通讯作者: 赵新红 E-mail:licpzhaoxh@lut.cn
  • 基金资助:
    国家自然科学基金项目(No.21306072)资助

Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves

Zhao Xinhong*, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao   

  1. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2015-11-01 Revised:2016-01-01 Online:2016-05-15 Published:2016-03-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21306072).
同时含有微孔和介孔的多级孔磷酸铝分子筛由于能减少微孔磷酸铝分子筛在涉及大分子的催化反应中的扩散限制,近年来逐渐成为人们的研究热点。本文主要阐述了多级孔磷酸铝分子筛的合成、表征和催化应用方面的最新进展。根据多级孔的生成机制,将多级孔磷酸铝分子筛的合成方法分成了四类,即硬模板法、软模板法、无模板法和后处理法,并对这些方法的优缺点进行了系统的比较。以磷酸硅铝分子筛为例,评述了各种表征多级孔分子筛的酸性和孔结构的方法。最后,对多级孔磷酸硅铝分子筛在三类重要的催化反应(即烷基化反应、异构化反应和甲醇制烯烃)中的研究进展进行了综述。
Hierarchically porous aluminophosphate molecular sieves possessing both micropores and mesopores recently receive increasing interest because they can reduce diffusion limitations in the reactions involving bulky molecules. This paper mainly focuses on the latest development of synthesis, characterizations and catalytic applications of hierarchically porous aluminophosphate molecular sieves. According to the formation mechanism of hierarchical pores, the synthetic methods of the hierarchical structured aluminophosphate molecular sieves can be classified into four categories: hard template, soft template, nontemplated and post-synthesis method. The advantages and disadvantages of these synthetic methods are systematically compared with each other. From the point view of industrial application, the nontemplated and post-synthesis methods are more promising compared to other synthetic routes. In addition, various techniques characterizing the acid properties and pore textures of hierarchically porous molecular sieves are described, taking silicoaluminophosphate molecular sieve as an example. However, most of these measurements need to be performed on complex expensive instruments, and the process is time-consuming. Thus, to develop some facile and general characterization techniques is highly desirable.Finally, the catalytic applications of these hierarchically porous materials in three kinds of important reactions (such as alkylation reaction, isomerization reaction and methanol to olefins) are reviewed. The relationships between the catalytic performances and the properties of catalysts are analyzed in detail.

Contents
1 Introduction
2 Synthesis of hierarchically porous aluminophosphate molecular sieves
2.1 Hard-template method
2.2 Soft-template method
2.3 Nontemplated method
2.4 Post-synthesis method
3 Characterizations of acid properties and pore textures
4 Catalytic applications of hierarchically porous aluminophosphate molecular sieves
4.1 Alkylation reaction
4.2 Isomerization reaction
4.3 Methanol (dimethyl ether) to olefins
4.4 Other reactions
5 Conclusion and outlook

中图分类号: 

()
[1] 谢在库(Xie Z K). 新结构高性能多孔催化材料(Porous Catalytic Materials with New Structure and Improved Performance). 北京: 中国石化出版社(Beijing: Sinopec Press), 2010. 129.
[2] Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J. Mater. Chem., 2012, 22(34): 17381.
[3] Hua Z L, Zhou J, Shi J L. Chem. Commun., 2011, 47(38): 10536.
[4] 王德举(Wang D J), 刘仲能(Liu Z N), 李学礼(Li X L), 谢在库(Xie Z K). 化学进展(Progress in Chemistry), 2008, 20(5): 637.
[5] 寇龙(Kou L), 王有和(Wang Y H), 彭鹏(Peng P), 阎子峰(Yan Z F). 化学进展(Progress in Chemistry), 2014, 26(4): 522.
[6] 汪洋(Wang Y), 马利勇(Ma L Y), 朱宁(Zhu N), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2009, 21(9): 1722.
[7] 彭鹏(Peng P), 张占全(Zhang Z Q), 王有和(Wang Y H), Fazle S, 阎子峰(Yan Z F). 化学进展(Progress in Chemistry), 2013, 25(12): 2028.
[8] Tao Y S, Kanoh H, Abrams L, Kaneko K. Chem. Rev., 2006, 106(3): 896.
[9] Egeblad K, Christensen C H, Kustova M. Chem. Mater., 2008, 20(3): 946.
[10] Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37(11): 2530.
[11] Na K, Choi M, Ryoo R. Microporous Mesoporous Mater., 2013, 166: 3.
[12] ?ejka J, Mintova S. Catal. Rev., 2007, 49(4): 457.
[13] Chal R, Gerardin C, Bulut M, van Donk S. Chem. Cat. Chem., 2011, 3(1): 67.
[14] Zhang K, Ostraat M L. Catal. Today., 2015, DOI:10.1016/j.cattod.2015.08.012.
[15] Egeblad K, Kustova M, Klitgaard S K, Zhu K, Christensen C H. Microporous Mesoporous Mater., 2007, 101(1/2): 214.
[16] Schmidt F, Paasch S, Brunner E, Kaskel S. Microporous Mesoporous Mater., 2012, 164: 214.
[17] Sanchez-Sanchez M, Manjon-Sanz A, Diaz I, Mayoral A, Sastre E. Cryst. Growth Des., 2013, 13(6): 2476.
[18] Bertolo R, Silva J M, Ribeiro F, Maldonado-Hodar F J, Fernandes A, Martins A. Appl. Catal. A, 2014, 485: 230.
[19] Naydenov V, Tosheva L, Sterte J. Microporous Mesoporous Mater., 2003, 66(2/3): 321.
[20] Naydenov V, Tosheva L, Antzutkin O N, Sterte J. Microporous Mesoporous Mater., 2005, 78(2/3): 181.
[21] Liu Y, Wang L, Zhang J, Chen F, Anpo M. Res. Chem. Intermed., 2011, 37(8): 949.
[22] Liu Y, Wang L, Zhang J, Chen L, Xu H. Microporous Mesoporous Mater., 2011, 145(1/3): 150.
[23] Choi M, Srivastava R, Ryoo R. Chem. Commun., 2006, 42: 4380.
[24] Danilina N, Krumeich F, van Bokhoven J A. J. Catal., 2010, 272(1): 37.
[25] Danilina N, Castelanelli S A, Troussard E, van Bokhoven J A. Catal. Today, 2011, 168(1): 80.
[26] Kim J, Bhattacharjee S, Jeong K E, Jeong S Y, Choi M, Ryoo R, Ahn W S. New J. Chem., 2010, 34(12): 2971.
[27] Yang S T, Kim J Y, Chae H J, Kim M, Jeong S Y, Ahn W S. Mater. Res. Bull., 2012, 47(11): 3888.
[28] Sun Q, Wang N, Xi D, Yang M, Yu J. Chem. Commun., 2014, 50(49): 6502.
[29] Wu L, Hensen E J M. Catal. Today., 2014, 235: 160.
[30] Verma D, Rana B S, Kumar R, Sibi M G, Sinha A K. Appl. Catal. A, 2015, 490: 108.
[31] Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z. J. Mater. Chem. A, 2015, 3(10): 5608.
[32] Fan Y, Xiao H, Shi G, Liu H, Bao X. J. Catal., 2012, 285(1): 251.
[33] Guo L, Bao X, Fan Y, Shi G, Liu H, Bai D. J. Catal., 2012, 294: 161.
[34] Singh A K, Yadav R, Sakthivel A. Microporous Mesoporous Mater., 2013, 181: 166.
[35] Yadav R, Singh A K, Sakthivel A. Chem. Lett., 2013, 42(10): 1160.
[36] Singh A K, Kondamudi K, Yadav R, Upadhyayula S, Sakthivel A. J. Phys. Chem. C, 2014, 118(48): 27961.
[37] Singh A K, Yadav R, Sudarsan V, Kishore K, Upadhyayula S, Sakthivel A. RSC Adv., 2014, 4(17): 8727.
[38] Kong L, Jiang Z, Zhao J, Liu J, Shen B. Catal. Lett., 2014, 144(9): 1609.
[39] Seo Y, Lee S, Jo C, Ryoo R. J. Am. Chem. Soc., 2013, 135(24): 8806.
[40] Yang X, LuA T, Chen C, Zhou L, Wang F, Su Y, Xu J. Microporous Mesoporous Mater., 2011, 144(1/3): 176.
[41] Zhou L, Lu T, Xu J, Chen M, Zhang C, Chen C, Yang X, Xu J. Microporous Mesoporous Mater., 2012, 161: 76.
[42] Xu B, Zhou L P, Wang F J, Qin H Q, Zhu J, Zou H F. Chem. Commun., 2012, 48(12): 1802.
[43] Yang H, Liu Z, Gao H, Xie Z. J. Mater. Chem., 2010, 20(16): 3227.
[44] Liu Y, Qu W, Chang W, Pan S, Tian Z, Meng X, Rigutto M, van der Made A, Zhao L, Zheng X, Xiao F S. J. Colloid Interface Sci., 2014, 418: 193.
[45] Razavian M, Fatemi S. Z. Anorg. Allg. Chem., 2014, 640(10): 1855.
[46] Komasi M, Fatemi S, Razavian M. Korean J. Chem. Eng., 2015, 32(7): 1289.
[47] Sun Q, Wang N, Guo G, Chen X, Yu J. J. Mater. Chem. A, 2015, 3(39): 19783.
[48] Cui Y, Zhang Q, He J, Wang Y, Wei F. Particuology, 2013, 11(4): 468.
[49] Wang F, Sun L, Chen C, Chen Z, Zhang Z, Wei G, Jiang X. RSC Adv., 2014, 4(86): 46093.
[50] Liu Z, Liu L, Song H, Wang C, Xing W, Komarneni S, Yan Z. Mater. Lett., 2015, 154: 116.
[51] Murthy K, Kulkarni S J, Masthan S K. Microporous Mesoporous Mater., 2001, 43(2): 201.
[52] Utchariyajit K, Wongkasemjit S. Microporous Mesoporous Mater., 2008, 114(1/3): 175.
[53] Utchariyajit K, Wongkasemjit S. Microporous Mesoporous Mater., 2010, 135(1/3): 116.
[54] Li Z, Martinez-Triguero J, Concepcion P, Yu J, Corma A. Phys. Chem. Chem. Phys., 2013, 15(35): 14670.
[55] Wang J, Song J, Yin C, Ji Y, Zou Y, Xiao F S. Microporous Mesoporous Mater., 2009, 117(3): 561.
[56] Manjon-Sanz A, Sanchez-Sanchez M, Munoz-Gomez P, Garcia R, Sastre E. Microporous Mesoporous Mater., 2010, 131(1/3): 331.
[57] Manjon-Sanz A, Sanchez-Sanchez M, Sastre E. Catal. Today., 2012, 179(1): 102.
[58] Jin Y, Chen X, Sun Q, Sheng N, Liu Y, Bian C, Chen F, Meng X, Xiao F S. Chem. Eur. J., 2014, 20(52): 17616.
[59] Zhou W. Adv. Mater., 2010, 22(28): 3086.
[60] Wang Q, Chen G, Xu S. Microporous Mesoporous Mater., 2009, 119(1/3): 315.
[61] Zhu J, Cui Y, Wang Y, Wei F. Chem. Commun., 2009, 22: 3282.
[62] Wang F X, Liang L, Ma J, Sun J M. Mater. Lett., 2013, 111: 201.
[63] Wang F X, Liang L, Ma J, Shi L, Sun J M. Eur. J. Inorg. Chem., 2014, 18: 2934.
[64] Zhao X H, Li X B, Chen J, Qi Y D, Wen J J, Ji D. J. Inorg. Mater., 2014, 29(8): 821.
[65] Zhao X, Chen J, Sun Z, Li A, Li G, Wang X. Microporous Mesoporous Mater., 2013, 182: 8.
[66] 赵新红(Zhao X H), 问娟娟(Wen J J), 陈静(Chen J), 赵江波(Zhao J B), 祁永东(Qi Y D), 李贵贤(Li G X). 无机化学学报(Chin. J. Inorg. Chem.), 2015, 31(1): 29.
[67] Zhao X, Zhao J, Wen J, Li A, Li G, Wang X. Microporous Mesoporous Mater., 2015, 213: 192.
[68] Li Y, Huang Y, Guo J, Zhang M, Wang D, Wei F, Wang Y. Catal. Today., 2014, 233: 2.
[69] Wu Q, Nartey Oduro I, Huang Y, Fang Y. Microporous Mesoporous Mater., 2015, 218: 24.
[70] Verboekend D, Milina M, Perez-Ramirez J. Chem. Mater., 2014, 26(15): 4552.
[71] Xi D, Sun Q, Xu J, Cho M, Cho H S, Asahina S, Li Y, Deng F, Terasaki O, Yu J. J. Mater. Chem. A, 2014, 2(42): 17994.
[72] Xi D, Sun Q, Chen X, Wang N, Yu J. Chem. Commun., 2015, 51(60): 11987.
[73] Groen J C, Peffer L A A, Pérez-Ramírez J. Microporous Mesoporous Mater., 2003, 60(1/3): 1.
[74] 于吉红(Yu J H), 闫文付(Yan W F). 纳米孔材料化学:合成与制备(Ⅱ) (Chemistry of Nanoporous Materials: Synthesis and Preparation (Ⅱ)).北京:科学出版社(Beijing: Science Press),2013. 76.
[75] Mahmoud E, Lobo R F. Microporous Mesoporous Mater., 2014, 189: 97.
[76] Zecevic J, Gommes C J, Friedrich H, de Jongh P E, de Jong K P. Angew. Chem. Int. Ed., 2012, 51(17): 4213.
[77] Liu Y, Zhang W P, Liu Z C, Xu S T, Wang Y D, Xie Z K, Han X W, Bao X H. J. Phy. Chem. C, 2008, 112(39): 15375.
[78] Milina M, Mitchell S, Cooke D, Crivelli P, Perez-Ramirez J. Angew. Chem. Int. Ed., 2015, 54(5): 1591.
[79] Milina M, Mitchell S, Crivelli P, Cooke D, Perez-Ramirez J. Nat. Commu., 2014, 5: 3922.
[80] Thibault-Starzyk F, Stan I, Abelló S, Bonilla A, Thomas K, Fernandez C, Gilson J P, Pérez-Ramírez J. J. Catal., 2009, 264(1): 11.
[81] 黄仲涛(Huang Z T). 工业催化剂手册(Handbook of Industrial Catalyst).北京:化学工业出版社(Beijing: Chemical Industry Press), 2004. 575.
[82] 梁君(Liang J), 王福平(Wang F P). 化学进展(Progress in Chemistry), 2008, 20(4): 457.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[4] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[5] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[6] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[7] 李里, 董健, 钱卫平*. 纳米碗阵列的制备与应用研究[J]. 化学进展, 2018, 30(2/3): 156-165.
[8] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[9] 王鹏远, 郭昌胜, 高建峰, 徐建. 石墨相氮化碳(g-C3N4)与Bi系复合光催化材料的制备及在环境中的应用[J]. 化学进展, 2017, 29(2/3): 241-251.
[10] 范功端, 林茹晶, 苏昭越, 许仁星. 沸石咪唑酯骨架材料用于水中污染物的去除[J]. 化学进展, 2016, 28(12): 1753-1761.
[11] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
[12] 闵媛媛, 尚蕴山, 宋宇, 李国栋, 巩雁军. 纳米薄层分子筛的合成与应用[J]. 化学进展, 2015, 27(8): 1002-1013.
[13] 历阳, 孙洪满, 王有和, 许本静, 阎子峰. 沸石分子筛的绿色合成路线[J]. 化学进展, 2015, 27(5): 503-510.
[14] 仇实, 郑景伟, 杨贵堂, 郑经堂, 吴明铂, 吴文婷. 三维有序大孔炭的设计构筑、性能及应用研究[J]. 化学进展, 2014, 26(05): 772-783.
[15] 寇龙, 王有和, 彭鹏, 阎子峰. 介孔沸石分子筛的制备[J]. 化学进展, 2014, 26(04): 522-528.