English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 241-251 DOI: 10.7536/PC161023 前一篇   后一篇

• 综述 •

石墨相氮化碳(g-C3N4)与Bi系复合光催化材料的制备及在环境中的应用

王鹏远1,2, 郭昌胜2*, 高建峰1, 徐建2   

  1. 1. 中北大学理学院 太原 030051;
    2. 中国环境科学研究院 环境基准与风险评估国家重点实验室 北京 100012
  • 收稿日期:2016-10-19 修回日期:2016-12-12 出版日期:2017-02-15 发布日期:2017-01-10
  • 通讯作者: 郭昌胜 E-mail:guocs@craes.org.cn

Preparation of Graphite Phase C3N4 and Bismuth Based Composite Photocatalyst and Its Environmental Application

Pengyuan Wang1,2, Changsheng Guo2*, Jianfeng Gao1, Jian Xu2   

  1. 1. School of Science, North University of China, Taiyuan 030051, China;
    2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
  • Received:2016-10-19 Revised:2016-12-12 Online:2017-02-15 Published:2017-01-10
半导体光催化技术可应用于环境中污染物的降解、转化和矿化以及太阳能的转换,是解决环境污染和能源短缺问题的一条有效途径。石墨相氮化碳(g-C3N4)与Bi系化合物复合材料因具有优异的光催化性能成为新型光催化材料的研究热点。本文论述了目前g-C3N4的主要制备方法,g-C3N4与Bi系复合材料的种类及其制备过程;同时围绕g-C3N4和Bi系复合催化材料在环境净化中的应用,包括对水体中污染物的降解及去除、光致细菌失活和光致水解产氢等,综述了国内外近年来的重要研究进展;以去除水环境中有机污染物为例,详细阐述了水体中有机污染物的光催化降解机理。最后,对g-C3N4与Bi系复合光催化材料的开发和应用前景进行了展望。
Semiconductor photocatalytic technology has been proved as an effective way to solve the problems of both environmental pollution and energy shortage. It can be applied for the degradation, transformation and mineralization of pollutants in the environment, and for the conversion of solar energy as well. Graphite phase carbon nitride (g-C3N4) and bismuth based composite materials have become the hot research topic because of their excellent photocatalytic performance. This paper reviews the preparation methods of g-C3N4 and its composites with different bismuth compounds. We also reviews the recent advances of the application of g-C3N4 and Bi composites in the environmental purification, including the elimination of pollutants in water, the light induced bacterial inactivation, and the photoinduced hydrolysis for hydrogen production. Taking the elimination of organic contaminants in water as an example, this paper elaborate detailedly their mechanisms of photocatalytic degradation. Finally, we prospect the new development and application potential of the g-C3N4 and Bi based composite photocatalytic materials in the environmental field.

Contents
1 Introduction
2 Synthesis of g-C3N4
2.1 Thermal polymerization method
2.2 Solvothermal synthesis
2.3 Electrochemical deposition
2.4 Solid phase synthesis
3 Preparation of g-C3N4 and bismuth based composites
3.1 Preparation of g-C3N4/Bi based halide oxides composites
3.2 Preparation of g-C3N4 and bismuth metal salts composites
3.3 Preparation of g-C3N4 and other bismuth compounds
4 Application of composites in the environment
4.1 Removal of organic pollutants in water environment
4.2 Photocatalytic hydrogen production by water splitting
4.3 Application of composite materials in other areas
5 Reaction mechanisms
6 Conclusion

中图分类号: 

()
[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8:76.
[3] Liu W, Wang M, Xu C, Chen S, Fu X. J. Mol. Catal., 2013, s368/369:9.
[4] Xin G, Meng Y. J. Chem., 2013, 2013.
[5] Zhou X, Jin B, Chen R, Peng F, Fang Y. Mater. Res. Bull., 2013, 48:1447.
[6] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem. 2012, 22:2721.
[7] Chen C C, Ma W H, Sun C Y, Zhao J C. Sci. China, 2012, 55:2532.
[8] Zhang Y, Antonietti Dr. M. Chem. Asi. J., 2010, 5:1307.
[9] Wang C, Zhu W, Xu Y, Xu H, Zhang M, Chao Y, Yin S, Li H, Wang J. Ceram. Int., 2014, 40:11627.
[10] Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal. B, 2013, 129:182.
[11] Xiu Z, Bo H, Wu Y, Hao X. Appl. Surf. Sci., 2014, 289:394.
[12] Xu J, Meng W, Zhang Y, Li L, Guo C S. Appl. Catal. B, 2011, 107:355.
[13] GuoC S, Xu J, Wang S F, Li L, Zhang Y, Li X C. CrystEngComm, 2012, 14:3602.
[14] Xu J, Li L, Guo C S, Zhang Y, Meng W. Appl. Catal. B, 2013, 130/131:285.
[15] Guo C S, Xu J, Wang S F, Zhang Y, He Y, Li X C. Catal. Sci. Technol., 2013, 3:1603.
[16] Xu J, Li L, Guo C S, Zhang Y, Wang S F. Chem. Eng. J., 2013, 221:230.
[17] Gao S W, Guo C S, Lv J P, Wang Q, Zhang Y, Hou S, Gao J F. Chem. Eng. J., 2017, 307:1055.
[18] 李二军(Li E J), 陈浪(Chen L),章强(Zhang Q),李文华(Li W H),尹双凤(Yin S F).化学进展(Prog. Chem.), 2010, 22:2282.
[19] Liebig J V. Ann. Pharm., 1834, 10:10.
[20] Cohen M L. Physical Review B.1985, 32:7988
[21] Liu A Y, Cohen M L. Science, 1989, 245:841.
[22] Teter D M, Hemley R J. Science, 1996, 271:53.
[23] Miller D R, Wang J, Gillan E G. J. Mater. Chem., 2002, 12:2463.
[24] Li X H, Chen J S, Wang X, Sun J, Antonietti M. J. Am. Chem. Soc., 2011, 133:8074.
[25] Niu P, Zhang L, Liu G, Cheng H M. Adv. Funct. Mater., 2012, 22:4763.
[26] Zhao Y, Zhao F, Wang X, Xu C, Zhang Z, Shi G, Qu L. Angew. Chem.Int.Ed., 2014, 53:13934.
[27] Martin D J, Qiu K, Shevlin S A, Handoko A D, Chen X, Guo Z, Tang J. Angew. Chem. Int. Ed., 2014, 53:9240.
[28] Li Y, Zhang H, Liu P, Wang D, Li Y, Zhao H. Small, 2013, 9:3336.
[29] Chen X, Zhang J, Fu X, Antonietti M, Wang X. J. Am. Chem. Soc., 2009, 131, 11658.
[30] Dong G, Zhang L. J. Mater. Chem., 2012, 22:1160.
[31] Long B, Lin J, Wang X. J.Mater.Chem.A, 2014, 2:2942.
[32] Zhang G, Zhang J, Zhang M, Wang X. J.Mater.Chem., 2012, 22:8083.
[33] Dong F, Wu L, Sun Y, Fu M, Wu Z, Lee S C. J. Mater. Chem., 2011, 21:15171.
[34] Liu J, Zhang T, Wang Z, Dawson G, Chen W. J. Mater. Chem., 2011, 21:14398.
[35] Tyborski T, Merschjann C, Orthmann S, Yang F, Lux-Steiner M C, Schedel-Niedrig T. J. Phys.:Condens. Matter., 2012, 24:543.
[36] Fu Q, Cao C B, Zhu H S. Chem. Phys. Lett., 1999, 314:223.
[37] Lv Q, Cao C, Li C, Zhang J, Zhu H, Kong X, Duan X. J. Mater. Chem., 2003, 13:1241.
[38] Luv Q, Cao C B, Zhang J T, Li C, Zhu H S. Appl. Phys. A, 2004, 79:633.
[39] Montigaud H, Tanguy B, Demazeau G, Alves I, Birot M, Dunogues J. Diamond Relat. Mater., 1999, 8:1707.
[40] Bai Y J, Bo L, Liu Z G, Ling L, Cui D L, Xu X G, Wang Q L. Journal of Crystal Growth., 2003, 247:505.
[41] Guo Q, Xie Y, Wang X, Zhang S, Hou T, Lv S. Chem. Commun., 2004, 10:26.
[42] Li J, Cao C, Zhu H. Nanotechnology, 2007, 18:4473.
[43] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51:11814.
[44] Bai X, Li J, Cao C, Hussain S. Mater. Lett., 2011, 65:1101.
[45] Fu Q, Cao C B, Zhu H S. Journal of Mater. Sci. Lett., 1999, 18:1485.
[46] Li C, Cao C, Zhu H. Chin. Sci. Bull., 2003, 48:1737.
[47] Bai X J, Jie L B, Cao C B. Appl. Surf. Sci., 2010, 256:2327.
[48] Fu Q, Jiu J T, Cai K, Wang H, Cao C B, Zhu H S. Phys. Rev. B, 1999, 59:1693.
[49] Knabashesku V, Zimmerman J, Margrave J. Chem. Mater., 2000, 12:3264.
[50] Zimmerman J L, Williams R, Khabashesku V, Margrave J. Nano Lett., 2001, 1:731.
[51] Zhang Z, Leinenweber K, Bauer M, Garvie L A, Mcmillan P F, Wolf G H. J. Am. Chem. Soc., 2001, 123:7788.
[52] Komatsu T. J. Mater. Chem., 2001, 11:802.
[53] Tragl S, Gibson K, Glaser J, Duppel V, Simon A, Meyer H J. Solid State Commun., 2007, 141:529.
[54] Li Y, Zhang J, Wang Q, Jin Y, Huang D, Cui Q, Zou G. Appl. Catal. B, 2010, 114:9429.
[55] Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H. J. Mater. Chem. A, 2014, 2:5340.
[56] Ye L, Liu J, Jiang Z, Peng T, Zan L, Appl. Catal. B, 2013, 142/143:1.
[57] Chang C, Zhu L, Wang S, Chu X, Yue L. ACS Appl. Mat. Interfaces, 2014, 6:5083.
[58] Lei L, Jin H, Zhang Q, Xu J, Gao D, Fu Z. Dalton Trans., 2015, 44:795.
[59] Wang Y, Bai X, Pan C, He J, Zhu Y. J. Mater. Chem., 2012, 22:11568.
[60] 桂明生(Gui M S), 王鹏飞(Wang P F), 袁东(Yuan D), 杨易坤(Yang Y D). 无机化学学报(Chin. J. Inorg. Chem.), 2013, 29:2057.
[61] Ji Y, Cao J, Jiang L, Zhang Y, Yi Z. J. Alloys Compd., 2014, 590:9.
[62] Ou M, Zhong Q, Zhang S, Yu L. J. Alloys Compd., 2015, 626:401.
[63] Zhao C, Tan G, Jing H, Wei Y, Ren H, Ao X. ACS Appl. Mat. Interfaces., 2015, 43:23949
[64] Li H, Liu J, Hou W, Du N, Zhang R, Tao X. Appl. Catal., B., 2014, 160/161:89.
[65] Yan T, Yan Q, Wang X, Liu H, Li M, Lu S, Xu W, Sun M. Dalton Trans., 2015, 44:1601.
[66] Chen W, Duan G R, Liu T Y, Chen S M, Liu X H. Mater. Sci. in Semicond. Process., 2015, 35:45.
[67] Li Z, Yang S, Zhou J, Li D, Zhou X, Ge C, Fang Y. Chem. Eng. J., 2014, 241:344.
[68] Zou X, Dong Y, Li X, Zhao Q, Cui Y, Lu G. Catal. Commun., 2015, 69:109.
[69] Tang J, Zhao H, Li G, Lu Z, Xiao S, Chen R. Ind. Eng. Chem. Res., 2013, 52:12604.
[70] Zhang W, Sun Y, Dong F, Zhang W, Duan S, Zhang Q. Dalton Trans., 2014, 43:12026.
[71] Tian N, Zhang Y, Huang H, Guo Y, He Y. Appl. Surf. Sci., 2014, 322:249.
[72] Zhang J, Hu Y, Jiang X, Chen S, Meng S, Fu X. J. Hazard. Mater., 2014, 280:713.
[73] Rong X, Qiu F, Yan J, Zhao H, Zhu X, Yang D. RSC Adv., 2015, 5:24944.
[74] Xu J, Xu Yan, Wang H M, Guo C S, Qiu H Y, He Y, Zhang Y, Li X C, Meng W. Chemosphere, 2015, 119:1379.
[75] 李若愚(Li R Y), 徐斌(Xu B), 高乃云(Gao N Y), 芮旻(Rui Y), 乐林生(Le L S), 吴今明(Wu J M). 中国给水排水(Chin. Water Wastewater), 2006, 22:1.
[76] 丁剑(Ding J), 张剑波(Zhang J B). 环境保护(Environ. Protec.), 2004, 12:54.
[77] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25:10397.
[78] Dong S, Cui Y, Wang Y, Li Y, Hu L, Sun J, Sun J. Chem. Eng. J., 2014, 249:102.
[79] Wang C, Zhu L, Wei M, Chen P, Shan G. Water Res., 2012, 46:845.
[80] 毛茂乔(Mao M Q), 单国强(Shan G Q), 夏佳慧(Xia J H), 杜伟(Du W), 王彤旭(Wang T X), 董思宇(Dong S Y), 祝凌燕(Zhu L Y). 科学通报(Chin Sci Bull), 2014, 59:3072.
[81] Xia J, Di J, Yin S, Li H, Xu H, Xu L, Shu H, He M. Mater. Sci. in Semicond. Process., 2014, 24:96.
[82] Shan W, Hu Y, Bai Z, Zheng M, Wei C. Appl. Catal. B, 2016, 188:1.
[83] Yue L, Wang S, Shan G, Wei W, Qiang L, Zhu L. Appl. Catal. B, 2015, s176/177, 11.
[84] Hernández-Uresti D B, Vázquez A, Sanchez-Martinez D, Obregón S. J. Photochem. Photobiol.A., 2016, 324:47.
[85] Li J, Zhou M, Ye Z, Wang H, Ma C, Huo P, Yan Y. RSC Adv, 2015, 5:91177.
[86] Huang K, Liu C, Yan X, Hong Y, Chen J, Huang C, Chen M, Shi W. CrystEngComm, 2016, 18.
[87] Wu M, Yan J M, Zhang X W, Zhao M. Appl. Surf. Sci., 2015, 354:196.
[88] Yan J, Wu H, Chen H, Pang L, Zhang Y, Jiang R, Li L, Liu S. Appl. Catal. B, 2016, 194:74.
[89] Chen T, Quan W, Yu L, Hong Y, Song C, Fan M, Xiao L, Gu W, Shi W. J. Alloys Compd., 2016, 686:628.
[90] Zeng Y, Wang Y, Chen J, Jiang Y, Kiani M, Li B, Wang R. Ceram. Int., 2016, 42:12297.
[91] Ho W, Zhang Z, Xu M, Zhang X, Wang X, Yu H. Appl. Catal. B, 2015, 179:106.
[92] Wang Z, Huang Y, Ho W, Cao J, Shen Z, Lee S C. Appl. Catal. B, 2016, 199:123.
[93] Rincón A G, Pulgarin C. Appl. Catal. B, 2003, 44:263.
[94] Yu J C, Ho W, Lin J, Yip H, Wong P K. Environ. Sci. Technol., 2003, 37:2296.
[95] Gan H, Zhang G, Huang H. J. Hazard Mater., 2013, 250/251:131.
[96] Wang H, Lu J, Wang F, Wei W, Chang Y, Dong S. Ceram. Int., 2014, 40:9077.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[4] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[14] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[15] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.