English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 932-946 DOI: 10.7536/PC171114 前一篇   后一篇

所属专题: 电化学有机合成

• 综述 •

二维MXene材料的制备与电化学储能应用

姚送送, 李诺, 叶红齐, 韩凯*   

  1. 中南大学化学化工学院 长沙 410083
  • 收稿日期:2017-11-14 修回日期:2017-12-29 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 韩凯 E-mail:hankai@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21706292)和湖南省自然科学基金项目(No.2017JJ3376)资助

Synthesis of Two-Dimensional MXene and Their Applications in Electrochemical Energy Storage

Kai Han, Nuo Li, Hongqi Ye, Kai Han*   

  1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2017-11-14 Revised:2017-12-29 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21706292) and the Natural Science Foundation of Hunan Province of China(No. 2017JJ3376).
将MAX相陶瓷通过液相刻蚀等方法移除A原子层可得到与石墨烯(Graphene)类似二维结构的过渡金属碳或氮化物(MXene),是近年来二维材料领域出现的新成员。独特的二维结构与丰富可调的组分使得MXene具有优异的导电与机械性能、高亲水表面与离子传输性能,受到越来越广泛的关注。目前已成功制备出的MXene材料有20余种,研究发现MXene应用于锂离子、非锂离子(如Na+、K+、Mg2+、Ca2+和Al3+)二次电池和电化学超级电容器均表现出优异的性能,是一种很有潜力的电极材料。本文总结对比了MXene材料制备方法,简要概述了MXene材料的电子、电磁与机械性能,重点介绍了MXene在电化学电池与超级电容器储能方面的应用,最后对MXene材料目前存在的主要问题及未来研究与应用前景进行了展望。
The removal of the "A" group layer from the MAX conductive ceramics(a family of ternary transition metal carbides or nitrides) phases results in two-dimensional materials which are named as MXene to denote the loss of the A element and emphasize their structure similarities with graphene. MXene is an emerging functional material in the field of two-dimensional crystal materials, which has excellent electric conductivity, low resistance of ion, strong mechanical strength, highly hydrophilic surface and 2D layer structure. As a novel kind of functional material, the methodology for preparing MXene and the potential applications have triggered tremendous interests. Until now, only 20 MXenes have been successfully synthesized and their composite materials have been demonstrated superior performance when applied in electrochemical energy storage, including secondary battery(Li-ion batteries and non-Li-ion batteries, i.e. Na+, K+, Mg2+, Ca2+ and Al3+) and electrochemical supercapacitor. In this review, the recent preparation methods and properties of MXene, especially the electrical characteristics, are summarized and compared. Then the applications of MXene materials in electrochemical energy storage are discussed in detail. The challenges and future perspective in the application of MXene materials are lastly outlined.
Contents
1 Introduction
2 Synthesis of MXene materials
2.1 HF etching
2.2 Fluoride-HCl mixture etching
2.3 Other approach
2.4 Synthesis of few/single layer MXene
3 Properties of MXene
3.1 Electronic properties
3.2 Electromagnetic properties
3.3 Mechanical properties
4 The applications in electrochemical energy storage of MXene materials
4.1 Lithium ion batteries
4.2 Non-lithium ion batteries
4.3 Lithium sulfur batteries
4.4 Supercapacitors
5 Conclusion and perspective

中图分类号: 

()
[1] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8):1178.
[2] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Prog. Mater. Sci., 2012, 57(7):1061.
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Firsov A A. Science, 2004, 306:666.
[4] Novoselov K S, Geim A K. Nat. Mater., 2007, 6(3):183.
[5] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37):4248.
[6] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7):992.
[7] Barsoum M W. MAX Phases:Properties of Machinable Ternary Carbides and Nitrides. John Wiley & Sons, 2013, 1-10.
[8] Barsoum M W. Prog. Solid St. Chem., 2000, 28:201.
[9] Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):16098.
[10] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2):1322.
[11] Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Chem. Soc., 2013, 135(43):15966.
[12] Chang F Y, Li C S, Yang J, Tang H, Xue M Q. Mater. Lett., 2013, 109:295.
[13] Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan L M, Zhang B, Yang J, Gogotsi Y, Billinge S J L, Barsoum M W. Chem. Commun., 2014, 50(67):9517.
[14] Meshkian R, Näslund L, Halim J, Lu J, Barsoum M W, Rosen J. Scr. Mater., 2015, 108:147.
[15] Sun D D, Hu Q K, Chen J F, Zhou A G. Key Eng. Mater., 2014, 602:527.
[16] Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. Adv. Mater., 2014, 16(17):7841.
[17] Zhou J, Zha X, Chen F Y, Ye Q, Eklund P, Du S, Huang Q. Angew. Chem.Int.Ed., 2016, 128(16):5092.
[18] Zhou Y C, He L F, Lin Z J, Wang J Y. J. Eur. Ceram. Soc., 2013, 33(15/16):2831.
[19] Mashtalir O, Naguib M, Dyatkin B, Gogotsi Y, Barsoum M W. Mater. Chem. Phys., 2013, 139(1):147.
[20] Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10):9507.
[21] Ghidiu M, Lukatskaya M R, Zhao M, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.
[22] Liu F, Zhou A, Chen J, Jia J, Zhou W, Wang L, Hu Q. Appl. Surf. Sci., 2017, 416:781.
[23] Wang X, Garnero C, Rochard G, Magne D, Morisset S, Hurand S, Mauchamp V. J. Mater. Chem. A, 2017, 5(41):22012.
[24] Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7):2374.
[25] Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh P L, Gogotsi Y. Nanoscale, 2016, 8(22):11385.
[26] Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4:1716.
[27] Naguib M, Unocic R R, Armstrong B L, Nanda J. Dalton Trans., 2015, 44(20):9353.
[28] Luo J, Fang C, Jin C, Yuan H, Sheng O, Fang R, Zhang W, Li W, Tao X. J. Mater. Chem. A, 2018, 6:7794.
[29] Khazaei M, Arai M, Sasaki T, Chung C, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Adv. Funct. Mater., 2013, 23(17):2185.
[30] Kurtoglu M, Naguib M, Gogotsi Y, Barsoum M W. MRS Commun., 2012, 2(4):133.
[31] Enyashin A N, Ivanovskii A L. J. Phys. Chem. C, 2013, 117(26):13637.
[32] Tang Q, Zhou Z. Prog. Mater. Sci., 2013, 58(8):1244.
[33] Wang S, Li J X, Du Y L, Cui C. Comp. Mater. Sci., 2014, 83:290.
[34] Berdiyorov G R. AIP Adv., 2016, 117(5):055105.
[35] Osti N C, Naguib M, Ostadhossein A, Xie Y, Kent P R, Dyatkin B, Mamontov E. ACS Appl. Mater. Interfaces, 2016, 8(14):8859.
[36] Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K, Yang X, Kolesnikov A I, Kent P R C. J. Am Chem. Soc., 2014, 136(17):6385.
[37] Zhao S, Kang W, Xue J. J. Mater. Chem. C, 2015, 3(4):879.
[38] Yang E, Ji H, Kim J, Kim H, Jung Y. Phys. Chem. Chem. Phys., 2015, 17(7):5000.
[39] Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B. ACS Appl. Mater. Inter., 2014, 6(14):11173.
[40] Zhao S J, Kang W, Xue J M. Appl. Phys. Lett., 2014, 104(13):133106.
[41] Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304):1137.
[42] Guo Z, Zhou J, Si C, Sun Z. Phys. Chem. Chem. Phys., 2015, 17(23):15348.
[43] Lee Y, Cho S B, Chung Y. ACS Appl. Mater. Inter., 2014, 6(16):14724.
[44] McDowell M T, Lee S W, Nix W D, Cui Y. Adv. Mater., 2013, 25:4966.
[45] Park M, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9(11):3844.
[46] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2008, 3(1):31.
[47] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater., 2011, 10(10):780.
[48] Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Aksay I A. ACS Nano, 2009, 3(4):907.
[49] Hu J, Xu B, Ouyang C, Yang S A, Yao Y. J. Phys. Chem. C, 2014, 118(42):24274.
[50] Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J. Adv. Mater., 2017, 1704561.
[51] Xie X, Kretschmer K, Anasori B, Sun B, Wang G, Gogotsi Y. ACS Appl. Nano Mater., 2018, 1:505.
[52] Yan Y, Matthew T, McDowell I R, Hui W, Nian L, Liangbing H, William D, Yi C. Nano Lett., 2011, 11(7):2949.
[53] Yang Z, Choi D, Kerisit S, Rosso K M, Wang D, Zhang J, Graff G, Liu J. J. Power Sources, 2009, 192(2):588.
[54] Naguib M, Come J, Dyatkin B, Presser V, Taberna P, Simon P, Barsoum M W, Gogotsi Y. Electrochem. Commun., 2012, 16(1):61.
[55] Lin Z, Sun D, Huang Q, Yang J, Barsoum M W, Yan X. J. Mater. Chem. A, 2015, 3(27):14096.
[56] Ren C E, Zhao M, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum M W, Gogotsi Y. ChemElectroChem, 2016, 3(5):689.
[57] Chen C, Boota M, Xie X, Zhao M, Anasori B, Ren C E, Miao L, Jiang J J, Gogotsi Y. J. Mater. Chem. A, 2017, 5(11):5260.
[58] Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q. ACS Appl. Mater. Inter., 2016, 8(34):22280.
[59] Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W. ACS Nano, 2016, 10(2):2491.
[60] Ahmed B, Anjum D H, Gogotsi Y, Alshareef H N. Nano Energy, 2017, 34:249.
[61] Zhang H, Dong H, Zhang X, Xu Y, Fransaer J. Electrochim. Acta, 2016, 202:24.
[62] Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Nano Lett., 2013, 13(7):3093.
[63] Share K, Cohn A P, Carter R, Rogers B, Pint C L. ACS Nano, 2016, 10(10):9738.
[64] Arthur T S, Zhang R, Ling C, Glans P A, Fan X, Guo J, Mizuno F. ACS Appl. Mater. Interfaces, 2014, 6(10):7004.
[65] Lin M C, Gong M, Lu B, Wu Y, Wang D Y, Guan M, Angell M, Chen C X, Yang J, Hwang B J, Dai H. Nature, 2015, 520(7547):324.
[66] Xie Y, Dall Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. ACS Nano, 2014, 8(9):9606.
[67] Lian P, Dong Y, Wu Z S, Zheng S, Wang X, Wang S, Sun C L, Qin J Q, Shi X Y, Bao X H. Nano Energy, 2017, 40:1.
[68] Dong Y, Wu Z, Zheng S, Wang X, Qin J, Wang S, Shi X, Bao X. ACS Nano, 2017, 11(5):4792.
[69] Wu Y, Nie P, Jiang J, Ding B, Dou H, Zhang X. ChemElectroChem, 2017, 4(6):1560.
[70] Liang X, Garsuch A, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(13):3907.
[71] Bao W, Su D, Zhang W, Guo X, Wang G. Adv. Funct. Mater., 2016, 26(47):8746.
[72] Song J, Su D, Xie X, Guo X, Bao W. ACS Appl. Mater. Inter., 2016, 8(43):29427.
[73] Biswas S, Drzal L T. Chem. Mater., 2010, 22(20):5667.
[74] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38(9):2520.
[75] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. J. Phys. Chem. C, 2009, 113(30):13103.
[76] Zhang K, Zhang L L, Zhao X S, Wu J. Chem. Mater., 2010, 22(4):1392.
[77] Gao Y P, Wang L B, Li Z Y, Zhang Y F, Xing B L, Zhang C X, Zhou A G. J. Adv. Ceram., 2015, 4(2):130.
[78] Dall'Agnese Y, Lukatskaya M R, Cook K M, Taberna P, Gogotsi Y, Simon P. Electrochem. Commun., 2014, 48:118.
[79] Wang F, Cao M, Qin Y, Zhu J, Wang L, Tang Y. RSC Adv., 2016, 6(92):88934.
[80] Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341(6153):1502.
[81] Hu M M, Li Z J, Zhang H, Hu T, Zhang C, Wu Z, Wang X H. Chem. Commun., 2015, 51(70):13531.
[82] Zhao M, Ren C E, Ling Z, Lukatskaya M R, Zhang C, van Aken K L, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(2):339.
[83] Ling Z, Ren C E, Zhao M, Yang J, Giammarco J M, Qiu J, Barsoum M W, Gogotsi Y. Proc. Natl. Acad. Sci., 2014, 111(47):16676.
[84] Yan P, Zhang R, Jia J, Wu C, Zhou A, Xu J, Zhang X. J. Power Sources, 2015, 284:38.
[85] Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C,Xia Y, Zhang J, Gan Y P, Tao X. ACS Nano, 2017, 11(3):2459.
[86] Dall'Agnese Y, Taberna P, Gogotsi Y, Simon P. J. Phys. Chem. Lett., 2015, 6(12):2305.
[87] Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Nat. Commun., 2015, 6:6544.
[1] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[2] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[3] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[4] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[5] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[6] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[7] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[8] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[9] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[10] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[13] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[14] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[15] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.