English
新闻公告
More
化学进展 2018, Vol. 30 Issue (6): 864-871 DOI: 10.7536/PC170927 前一篇   后一篇

• 综述 •

透明防雾材料

李啸1,2, 艾玲1, 张景1, 张贤鹏1, 鲁越晖1*, 宋伟杰1   

  1. 1. 中国科学院宁波材料技术与工程研究所 宁波 315201;
    2. 中国科学技术大学纳米学院 苏州 215123
  • 收稿日期:2017-09-25 修回日期:2018-01-16 出版日期:2018-06-15 发布日期:2018-03-07
  • 通讯作者: 鲁越晖,e-mail:yhlu@nimte.ac.cn E-mail:yhlu@nimte.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.61574144,61605224)、浙江省自然科学基金项目(No.LY15F050003,LY17A040004)和宁波市自然科学基金项目(No.2016A610053,2017A610021)资助

Transparent Antifogging Materials

Xiao Li1,2, Ling Ai1, Jing Zhang1, Xianpeng Zhang1, Yuehui Lu1*, Weijie Song1   

  1. 1. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
  • Received:2017-09-25 Revised:2018-01-16 Online:2018-06-15 Published:2018-03-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.61574144,61605224),the Zhejiang Provincial Natural Science Foundation (No.LY15F050003,LY17A040004),and the Ningbo City Natural Science Foundation (No.2016A610053,2017A610021).
透明材料在日常生活和工业生产中占据重要的地位,但是在使用过程中经常由于结雾问题会带来诸多不便甚至造成经济损失,因此,透明防雾材料的研究具有重要的意义。本文首先介绍了防雾的基本原理和实现防雾的两种主要途径,即亲水和疏水防雾,再详细介绍了通过不同途径以实现防雾功能的具体防雾材料体系及制备方法,最后对透明防雾材料的应用及发展趋势进行了总结与展望。
Transparent materials play an important role in our daily life as well as industrial manufacturing. However, fog often occurs on the transparent surfaces, possibly leading to unavailability and economic loss. Therefore, it is of great significance to study the means to prevent the transparent surfaces from fogging using antifogging coatings. This review introduces the fundamentals in antifogging and the two routes to realize antifogging surfaces, i.e., hydrophilic and hydrophobic antifogging. Accordingly, the state of the art antifogging materials and fabrication are introduced in detail. Finally, a perspective on applications and future development of antifogging materials is provided.
Contents
1 Introduction
2 Antifogging mechanism
3 Hydrophilic antifogging
3.1 Functionalized polymer antifogging materials
3.2 Inorganic antifogging materials
3.3 Organic-inorganic hybrid antifogging materials
4 Hydrophobic antifogging
5 Conclusion and perspective

中图分类号: 

()
[1] Reitan C H. J. Appl. Meteor., 1963, 2:776.
[2] Patel P, Choi C K, Meng D D. J. Assoc. Lab.Autom.,2010, 15:114.
[3] Chae S S, Kim K H, Park J H, Lee K H, Han S W, Oh J Y, Baik H K, Kim Y S. Adv. Mater. Interfaces, 2016, 3.1500752.
[4] Li Y X, Xu F, Wang Y, Ma B H, Sun J Q. Chem. Mater., 2016, 28:6975.
[5] Zhang L, Qiao Z A, Zheng M, Huo Q S,Sun J Q. J. Mater. Chem., 2010, 20:6125.
[6] Li Y F, Zhang J H, Zhu S J, Dong H P, Jia F, Wang Z H, Sun Z Q, Li Y, Li H B, Xu W Q, Yang B. Adv. Mater., 2009, 21:4731.
[7] Zhou G, He J H, Xu L G. Microporous Mesoporous Mater., 2013, 176:41.
[8] Gwon H J, Park Y, Moon C W, Nahm S, Yoon S J, Kim S Y, Jang H W. Nano Res., 2014, 7:670.
[9] Park J T, Kim J H, Lee D. Nanoscale, 2014, 6:7362.
[10] Kim J G, Choi H J, Park K C, Cohen R E, McKinley G H, Barbastathis G. Small, 2014, 10:2487.
[11] Sun Z Q, Liao T, Liu K S, Jiang L, Kim J H. Dou S X. Small, 2014, 10:3001.
[12] Checco A, Rahman A, Black C T. Adv. Mater., 2014, 26:886.
[13] Wen L P, Tian Y, Jiang L. Angew. Chem. Int. Ed., 2015, 54:3387.
[14] Young T, Pritchard R H, West R G. Philos. Trans., 1805, 95:65.
[15] Smith J D, Dhiman R, Anand S, Reza G E, Cohen R E, McKinley G H, Varanasi K K. Soft Matter, 2013, 9:1772.
[16] Wenzel R N. Ind. Eng. Chem., 1936, 28:988.
[17] Forsberg P S H, Priest C, Brinkmann M, Sedev R, Ralston J. Langmuir, 2009, 26:860.
[18] Lafuma A, Quéré D. Nat. Mater., 2003, 2:457.
[19] Cassie A B D, Baxter S. Trans. Fara. Soc., 1944, 40:546.
[20] Peters A M, Pirat C, Sbragaglia M, Borkent B M, Wessling M, Lohse D, Lammertink R G H. Eur. Phys. J., 2009, 29:391.
[21] Murakami D, Jinnai H, Takahara A. Langmuir, 2014, 30:2061.
[22] Zhao J, Meyer A, Ma L, Wang X J, Ming W H. RSC Adv., 2015, 5:102560.
[23] Park S, Park S, Jang D H, Lee H S, Park C H. Mater. Lett., 2016, 180:81.
[24] Shibraen M H M A, Yagoub H, Zhang X J, Xu J, Yang S G. Appl. Surf. Sci., 2016, 370:1.
[25] Zhang W H, Zhu L Q, Ye H, Liu H C, Li W P. RSC Adv., 2016, 6:92252.
[26] Zhang X J, He J H. Int. J.Nanosci., 2014, 14:1460015.
[27] Zhang X J, He J H. Sci. Rep., 2015, 5:9227.
[28] Zhang X J, He J H. Chem. Commun., 2015, 51:12661.
[29] Zhang X J, He J H, Jin B B. Sci. Rep., 2016, 6:33494.
[30] England M W, Urata C, Dunderdale G J, Hozumi A. ACS Appl. Mater. Interfaces, 2016, 8:4318.
[31] Nam E, Wong E H H, Tan S, Fu Q, Blencowe A, Qian G G. Macromo. Mater. Eng., 2017, 302:1600199.
[32] Zhao J, Ma L, Millians W, Wu T H, Ming W H. ACS Appl. Mater. Interfaces, 2016, 8:8737.
[33] Zheng J Y, Bao S H, Jin P. Nano Energy, 2015, 11:136.
[34] Xiong Y B, Lai M, Li J, Yong H B, Qian H Z, Xu C Q, Zhong K, Xiao S R. Surf. Coat. Technol., 2015, 265:78.
[35] Eshaghi A, Mojab M. J Non-Cryst. Solids, 2014, 405:148.
[36] Yao L, He J H, Geng Z, Ren T T. Nanoscale, 2015, 7:13125.
[37] Zhang X P, Lan P J, Lu Y H, Li J, Xu H, Zhang J, Lee Y P, Rhee J Y, Choy K L, Song W J. ACS Appl. Mater. Interfaces, 2014, 6:1415.
[38] Chen J, Zhang L, Zeng Z, Wang G, Liu G M, Zhao W J, Ren T H, Xue Q J. Colloids Surf. A:Phys. Eng. Aspects, 2016, 509:149.
[39] Liu F, Shen J, Zhou W Y, Zhang S Y, Wan L. RSC Adv., 2017, 7:15992.
[40] Yao L, He J H. J. Mater. Chem. A., 2014, 2:6994.
[41] Li X Y, He J H. ACS Appl. Mater. Interfaces, 2012, 4:2204.
[42] Xu L G, He J H, Yao L. ACS Appl. Mater. Interfaces, 2012, 4:3293.
[43] Huang K T, Yeh S B, Huang C J. ACS Appl. Mater. Interfaces, 2015, 7:21021.
[44] Hu X, Yu Y, Wang Y, Wang Y Q, Zhou J E, Song L X. Mater. Lett., 2016, 182:372.
[45] Du X, He J H. Langmuir, 2011, 27:2972.
[46] Du X, He J H. J Colloid Interface Sci., 2012, 381:189.
[47] Xu L G, He J H, Yao L. J. Mater. Chem. A., 2014, 2:402.
[48] Chang Y, Li Y, Wang J, Wang C W. Mater. Lett., 2017, 187:162.
[49] Saxena N, Naik T, PariaS. J. Phys. Chem. C, 2017, 121:2428.
[50] Wei H S, Liu K T, Chang Y C, Chan C H, Lee C C, Kuo C C. Surf. Coat. Technol., 2017, 320:377.
[51] Wu Y W, Hang T, Yu Z Y, Xu L, Li M. Chem. Commun., 2014, 50:8405.
[52] Jiang L, Zhao Y, Zhai J. Angew. Chem., 2004, 116:4438.
[53] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Adv. Mater., 2008, 20:4049.
[54] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463:640.
[55] Wang Y F, Wang X W, Lai C L, Hu H W, Kong Y Y, Fei B, Xin J H. ACS Appl. Mater. Interfaces, 2016, 8:2950.
[56] Liu C C, Ju J, Zheng Y M, Jiang L. ACS Nano, 2014, 8:1321.
[57] Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Nat. Mater., 2003, 2:461.
[58] Kustandi T S, Samper V D, Yi D K, Ng W S, Neuzil P. Sun W. Adv. Funct. Mater., 2007, 17:2211.
[59] Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen, F, Mayer J, Hoffmann S, Riederer M, Riedel M, Baumgartener W. J. Exp. Biol., 2010, 213:1115.
[60] Mouterde T, Lehoucq G, Xavier S, Checco A, Black C T, Ranman A, Midavaine T, Clanet C, Quere D. Nat. Mater., 2017, 16:658.
[61] Zhang M Q, Wang L, Feng S L, Zheng Y M. Chem. Mater., 2017, 29:2899.
[62] Wen M X, Wang L, Zhang M Q, Jiang L, Zheng Y M. ACS Appl. Mater. Interfaces, 2014, 6:3963.
[63] Shang Q Q, Zhou Y H. Ceram. Int., 2016, 42:8706.
[64] 刘湘梅(Liu X M), 贺军辉(He J H). 化学进展(Progress in Chemistry), 2010, 22:270.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[3] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[4] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[5] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[6] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[7] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[8] 田诗伟, 毛国梁, 张珈瑜, 历娜, 姜梦圆, 吴韦. 开关型Pickering乳液体系[J]. 化学进展, 2020, 32(4): 434-453.
[9] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[10] 黄威嫔, 任科峰, 计剑. 聚合物材料表面微结构调控新策略[J]. 化学进展, 2020, 32(10): 1494-1503.
[11] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[12] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.
[13] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[14] 周长路, 辛忠*. 聚苯并嗪功能表面的构筑、性能与应用[J]. 化学进展, 2018, 30(1): 112-123.
[15] 牛娜, 李志英, 高婷婷, 刘玉东, 刘晓丽, 刘凤岐*. 疏水缔合水凝胶[J]. 化学进展, 2017, 29(7): 757-765.
阅读次数
全文


摘要

透明防雾材料