English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2202-2221 DOI: 10.7536/PC220117 前一篇   后一篇

• 综述与评论 •

微结构化柔性压力传感器的性能增强机制、实现方法与应用优势

赵静1,2, 王子娅3, 莫黎昕1,2,*(), 孟祥有1,2, 李路海1,2, 彭争春3,*()   

  1. 1 北京印刷学院印刷与包装工程学院 北京 102600
    2 北京印刷学院北京市印刷电子工程技术研究中心北京 102600
    3 深圳大学物理与光电工程学院 教育部光电器件与系统重点实验室 柔弹性电子与纳米传感器研究中心 深圳 518060
  • 收稿日期:2022-01-14 修回日期:2022-03-08 出版日期:2022-10-24 发布日期:2022-04-01
  • 通讯作者: 莫黎昕, 彭争春
  • 基金资助:
    国家自然科学基金项目(61903317); 北京市自然科学基金项目(KZ202110015019); 北京印刷学院科技计划(Ef202002); 粤港科技创新联合基金项目(2021A0505110015); 深圳市创新团队项目(KQTD20170810105439418); 深圳市重点项目(JCYJ20200109114237902)

Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors

Zhao Jing1,2, Wang Ziya3, Mo Lixin1,2(), Meng Xiangyou1,2, Li Luhai1,2, Peng Zhengchun3()   

  1. 1 College of Printing and Packaging Engineering, Beijing Institute of Graphic Communication,Beijing 102600, China
    2 Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication,Beijing 102600, China
    3 Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University,Shenzhen 518060, China
  • Received:2022-01-14 Revised:2022-03-08 Online:2022-10-24 Published:2022-04-01
  • Contact: Mo Lixin, Peng Zhengchun
  • Supported by:
    National Natural Science Foundation of China(61903317); Beijing Natural Science Foundation(KZ202110015019); research plan of BIGC(Ef202002); Joint Funding Program of Guangdong Department of Science and Technology and Hongkong Innovation and Technology(2021A0505110015); Shenzhen Science and Technology Program(KQTD20170810105439418); Shenzhen Science and Technology Program(JCYJ20200109114237902)

柔性压力传感器具有易共形、高灵敏、快响应等特点,是发展物联网、可穿戴电子、触觉人工智能等领域的关键核心器件。通过敏感功能材料开发、功能层微结构设计、微纳制造方法优化等策略,可提升柔性压力传感器的综合性能,扩张其应用场景。其中,功能层微结构的创新设计被普遍认为是增强柔性传感器性能最有效的手段之一。本文综述了近年来基于微结构化的柔性压力传感器的最新研究进展,围绕微结构对于柔性压力传感器性能增强的机制、微结构的设计与实现方法以及微结构化柔性压力传感器在人机交互、医疗健康等领域的应用等方面进行详细阐述,并在此基础上对其未来发展方向进行展望。

The flexible pressure sensor with high flexibility, easy conformality, high sensitivity and fast response is a novel flexible electronic device. It is also the critical device for the development of tactile artificial intelligence, internet of things, wearable electronics and relative technologies. The strategies based on development of sensitive functional materials, device structure design and construction, and optimization of fabrication methods have been widely used to improve the comprehensive performance of flexible pressure sensors. Among them, utilizing the microstructure of functional layer of flexible pressure sensor to enhance its performance is generally considered to be one of the most effective ways. In this paper, the latest research progress of microstructured flexible pressure sensors in recent years is summarized. It mainly focuses on the performance enhancement mechanism of microstructured flexible pressure sensor, microstructure construction and fabrication methods, new sensitive functional materials, as well as its applications in human-machine interaction, medical and health and other relative fields. Finally, the future development of microstructured flexible pressure sensor is prospected.

()
图1 不同微结构柔性压力传感器设计:半球、金字塔、纳米线、多级、仿生皮肤微纳结构等;基于上述微结构的压力与电阻关系模拟曲线[9]
Fig. 1 Design of flexible pressure sensors with different microstructures: hemisphere, pyramid, nanowire, multi-level, bionic skin micro-nano structure; Simulation curve of the relationship between pressure and resistance based on the above microstructure[9]
图2 不同类型柔性压力传感器工作机理示意图(a)压电式;(b)电阻式;(c)电容式;(d)摩擦电式[13]
Fig. 2 Schematic diagrams of pressure sensors based on different working mechanisms: (a) piezoelectric; (b) piezoresistive; (c) capacitive; (d) triboelectric[13]
图3 部分文献中柔性压力传感器灵敏度和压力范围关系
Fig. 3 The relationship between the sensitivity of the flexible pressure sensor and the pressure range in literature
图4 不同压力响应范围内传感器的应用: (a)声波探测[29];(b)对微小重量响应(约1 Pa)[30];(c)监测人体脉搏[31];(d)对人体按压感知响应[32];(e)抓取物体的机器人手[33];(f)智能鞋垫用于监测足底压力[34];(g)用于智能飞机座椅[35];(h)无人机表面飞行压力监测[36];(i)汽车轮胎压力监测[37]
Fig. 4 Different applications of flexible pressure sensor in different pressure ranges: (a) sound monitoring[29]; (b) response to tiny weight (≈1 Pa)[30]; (c) human pulse monitoring[31]; (d) touch press response[32]; (e) robotic hand grabbing pressure testing[33]; (f) smart insoles[34]; (g) smart aircraft seats[35]; (h) flight pressure monitoring[36]; (i) car tire pressure monitoring[37]
图5 介电层多孔微结构对电容式柔性压力传感器灵敏度提升机制示意图[40]:(a)无微结构和(b)具有内部多孔微结构介电层传感器受压情况下电极间距和介电常数变化情况;(c)微结构引起的器件电容变化率比较
Fig. 5 Schematic diagram of the sensitivity enhancement mechanism of the capacitive flexible pressure sensor with porous dielectric layer. The change of the electrodes distance and dielectric constant under pressure of sensor (a) without and (b) with the porous dielectric layer; (c) Comparison of the capacitance change between porous and solid dielectric sensor under pressure
图6 微结构化离子凝胶电介质受力下应力分布情况[42]
Fig. 6 Stress distribution of the microstructured ionic gel dielectric under force[42]
图7 (a)传感器受力前后功能层内部导电粒子分布及其导电通路变化示意图;(b)受力前后材料内部导电纤维间接触点的变化示意图[54];(c)一次结构和(d)多级结构受力前后其微结构与电极接触及受力情况分析
Fig. 7 (a) The evolution of the distribution of conductive particles and its formed paths in the functional layer of flexible sensor under pressure; (b) The evolution of the contact points of conductive fibers under pressure[54]; (c) The analysis of the contact area between the microstructure and the electrode as well as its corresponding stress condition under pressure for the primary structure and (d) the multi-level structure
图8 (a)无微结构和(b)微结构化压电式柔性压力传感器受力情况下电荷极化对比示意图
Fig. 8 Schematic diagram of the polarization of piezoelectric flexible pressure sensor (a) without and (b) with microstructures under pressure
图9 利用光刻模板法制备还原氧化石墨烯微结构共形电极示意图[60]
Fig.9 Preparation of the microstructure conformal electrode of reduced graphene oxide using photolithography template method[60]
图10 (a)基于砂纸模板的微结构电极制备流程;(b)石墨烯在微结构表面共形沉积拉曼光谱;(c~e)微结构SEM表征[65]
Fig. 10 (a) Preparation process of microstructured electrodes based on sandpaper template; (b) Raman spectra of conformal deposition of graphene on the surface of microstructures; (c~e) SEM of microstructures[65]
图11 利用白砂糖溶解获得电极内部多孔微结构的流程[71]
Fig. 11 Process of obtaining the porous microstructure inside the electrode by dissolving white sugar[71]
图12 气凝胶形貌SEM图像以及传感器的示意图[74]
Fig. 12 SEM and schematic diagram of aerogel sensor[74]
图13 (a) 3D打印活性层及其(b)器件制备示意图[83]; (c)本课题组利用墨水直写法制备微结构化功能层及墨水流变性能
Fig. 13 (a) Process of 3D printing for the active layer and (b) its corresponding process of flexible pressure sensor fabrication[83]; (c) Preparation of the microstructured functional layer by the 3D ink direct writing method in our group and rheological properties of the ink
图14 (a)基于PDMS、热膨胀微胶囊、低维纳米导电填料的复合功能油墨;(b)热膨胀微胶囊在PDMS内部形成的多孔微结构[85];(c)柔性压力传感器灵敏度特性曲线[85];(d)响应时间曲线[85];(e)100 kPa压力冲击下稳定性曲线[85];(f)曲臂测试[85];(g)压力分布测试[85]
Fig. 14 (a) The pressure sensitive composite ink based on PDMS, thermal expansion microcapsules and low-dimensional nanomaterials; (b) The porous microstructure formed by thermally expansion microcapsules in PDMS[85]; (c) The sensitivity characteristic curve of the flexible pressure sensor[85]; (d) response time[85]; (e) cyclically stability under 100 kPa[85]; (f) crank arm test[85]; (g) pressure distribution test[85]
表1 已报道不同微结构化方法比较
Table 1 Comparison of different fabrication methods for the microstructures
图15 基于多重氢键自修复的修复机理示意图[88]
Fig.15 Repair mechanism diagram based on multiple hydrogen bond self-repair[88]
图16 以MXene与PVDF-TrFE复合材料为介电层制备的电容式柔性压力传感器[96]:(a)制备流程; (b) MXene与PVDF-TrFE相互作用示意图
Fig.16 Capacitive flexible pressure sensor based on MXene and PVDF-TrFE composite dielectric layer[96]:(a) Preparation process; (b) Interaction of MXene and PVDF-TrFE
图17 表面沉积有(PEDOT:PSS)/PUD的半球微结构及灵敏度曲线[27]
Fig. 17 the hemisphere structure coated with (PEDOT:PSS)/ PUD solution and sensitivity curve[27]
图18 离子凝胶电双层柔性压力传感器示意图[14]
Fig.18 Schematic diagram of the flexible pressure sensor based on electric double-layer ion gel[14]
图19 微结构化柔性压力传感器的典型应用:(a)人体发声监测[92]; (b)监测人体脉搏[31]; (c)手肘弯曲监测[85]; (d)智能鞋垫监测足底压力分布[101]; (e)用于皮艇上的传感器在水中模拟实验图[102]; (f)用于无人机表面监测飞行压力[36]; (g)抓取网球的机器人手[33]; (h)电子皮肤用于机器人手[103];(i)电子皮肤键盘[95]; (j)微结构的传感器示意图
Fig. 19 Typical applications of flexible pressure sensors with microstructures (a) human vocalization monitoring[92]; (b) pulse monitoring[31]; (c) elbow bending monitoring[85]; (d) smart insole[101]; (e) water simulation experiment diagram of sensors used on kayaks[102]; (f) flight pressure monitoring[36]; (g) robotic hand grabbing tennis balls[33]; (h) electronic skin used in robotic hands[103]; (i) electronic skin keyboard[95]; (j) diagram of microstructured sensors
图20 柔性压力传感器用于人体健康与运动监测[85,104]
Fig. 20 Applications of the flexible pressure sensor on human health and exercise monitoring[85,104]
图21 (a)传感器网络可用于人体手臂表面以及腹部皮肤;(b)电子皮肤光学图像;(c)传感阵列蜿蜒结构的SEM图像;(d)传感器的结构示意图;(e)传感器具有高度可拉伸性用于手指等皮肤[103]
Fig. 21 (a) The sensor network can be used on the surface of the human arm and the abdominal skin; (b) the optical image of the electronic skin; (c) the SEM image of the serpentine structure of the sensor array; (d) the composition of the sensor; (e) the sensor is highly stretchable for use in fingers and other skin[103]
图22 由柔性传感器和软机器组成的人机交互界面及其实际应用[108]
Fig. 22 Human-machine interaction interface composed of flexible sensors and soft machines and its practical application[108]
图23 (a)从“5”到“1”的手势演示实时控制机器手的照片[109];(b)集成机器人手、抓取过程示意图及其压力响应曲线[110]
Fig. 23 (a) Photographs of instant controlling of robot hand by demonstrating the gestures from “five” to “one”[109];(b) the diagram of the integrated robot hand, grasping process and its pressure response curve[110]
[1]
Mück J E, Ünal B, Butt H, Yetisen A K. Trends in Biotechnology, 2019, 37(6): 563.

doi: 10.1016/j.tibtech.2019.02.001     URL    
[2]
Mishra R B, El-Atab N, Hussain A M, Hussain M M. Adv. Mater. Technol., 2021, 6(4): 2001023.

doi: 10.1002/admt.202001023     URL    
[3]
Kalambate P K, Dhanjai, Huang Z M, Li Y K, Shen Y, Xie M L, Huang Y H, Srivastava A K. Trac Trends Anal. Chem., 2019, 115: 147.

doi: 10.1016/j.trac.2019.04.002     URL    
[4]
Huang Y, Fan X Y, Chen S C, Zhao N. Adv. Funct. Mater., 2019, 29(12): 1808509.

doi: 10.1002/adfm.201808509     URL    
[5]
Qin J, Yin L J, Hao Y N, Zhong S L, Zhang D L, Bi K, Zhang Y X, Zhao Y, Dang Z M. Adv. Mater., 2021, 33(34): e2008267.
[6]
Li J, Bao R R, Tao J, Peng Y Y, Pan C F. J. Mater. Chem. C, 2018, 6(44): 11878.

doi: 10.1039/C8TC02946F     URL    
[7]
Chen W F, Yan X. J. Mater. Sci. Technol., 2020, 43: 175.

doi: 10.1016/j.jmst.2019.11.010     URL    
[8]
Cai S S, Han Z Y, Wang F L, Zheng K W, Cao Y, Ma Y J, Feng X. Sci. China Inf. Sci., 2018, 61(6): 1.
[9]
He J, Zhang Y F, Zhou R H, Meng L R, Chen T, Mai W J, Pan C F. J. Materiomics, 2020, 6(1): 86.

doi: 10.1016/j.jmat.2020.01.009     URL    
[10]
Liu X, Wei Y, Qiu Y Y. Micromachines, 2021, 12(6): 695.

doi: 10.3390/mi12060695     URL    
[11]
Wang X W, Liu Z, Zhang T. Small, 2017, 13(25): 1602790.

doi: 10.1002/smll.201602790     URL    
[12]
Xiong Y X, Hu Y G, Zhu P L, Sun R, Wang Z P. Prog. Chem., 2019, 31(6): 800.
熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 化学进展, 2019, 31(6): 800. ).

doi: 10.7536/PC181039    
[13]
He F L, You X Y, Wang W G, Bai T, Xue G F, Ye M D. Small Methods, 2021, 5(3): 2001041.
[14]
Bai N N, Wang L, Wang Q, Deng J, Wang Y, Lu P, Huang J, Li G, Zhang Y, Yang J L, Xie K W, Zhao X H, Guo C F. Nat. Commun., 2020, 11: 209.

doi: 10.1038/s41467-019-14054-9     URL    
[15]
Li S P, Liu H, Zhu Z C, Sun X F, Tang Z H, Guo Y, Hu Q, Zhang Y. Smart Mater. Struct., 2021, 30(2): 025004.

doi: 10.1088/1361-665X/abcca1     URL    
[16]
Fernandes L C, Correia D M, Pereira N, Tubio C R, Lanceros-MÉndez S. Compos. Sci. Technol., 2021, 214: 108976.

doi: 10.1016/j.compscitech.2021.108976     URL    
[17]
Keum K, Heo J S, Eom J, Lee K W, Park S K, Kim Y H. Sensors, 2021, 21(2): 442.

doi: 10.3390/s21020442     URL    
[18]
Chhetry A, Kim J, Yoon H, Park J Y. ACS Appl. Mater. Interfaces, 2019, 11(3): 3438.

doi: 10.1021/acsami.8b17765     URL    
[19]
Xiao Y, Duan Y, Li N, Wu L L, Meng B, Tan F H, Lou Y, Wang H, Zhang W G, Peng Z C. ACS Sens., 2021, 6(5): 1785.

doi: 10.1021/acssensors.0c02547     URL    
[20]
Hassinen T, Eiroma K, Mäkelä T, Ermolov V. Sens. Actuat. A Phys., 2015, 236: 343.

doi: 10.1016/j.sna.2015.11.007     URL    
[21]
Yeo S Y, Park S, Yi Y J, Kim D H, Lim J A. ACS Appl. Mater. Interfaces, 2017, 9(49): 42996.

doi: 10.1021/acsami.7b15960     URL    
[22]
Baek S, Bae G Y, Kwon J, Cho K, Jung S. ACS Appl. Mater. Interfaces, 2019, 11(34): 31111.

doi: 10.1021/acsami.9b09636     URL    
[23]
Griffith M J, Cooling N A, Elkington D C, Wasson M, Zhou X J, Belcher W J, Dastoor P C. Nanomaterials, 2021, 11(5): 1185.

doi: 10.3390/nano11051185     URL    
[24]
Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L. Nat. Photonics, 2013, 7(9): 752.

doi: 10.1038/nphoton.2013.191     URL    
[25]
Ren B, Liu J. Sensors, 2021, 21(11): 3780.

doi: 10.3390/s21113780     URL    
[26]
Eom J H, Choi H J, Pammi S V N, Tran V D, Kim Y J, Kim H J, Yoon S G. J. Mater. Chem. C, 2018, 6(11): 2786.

doi: 10.1039/C8TC00081F     URL    
[27]
Lee Y, Myoung J, Cho S, Park J, Kim J, Lee H, Lee Y, Lee S, Baig C, Ko H. ACS Nano, 2021, 15(1): 1795.

doi: 10.1021/acsnano.0c09581     URL    
[28]
Gao L B, Han Y, Surjadi J U, Cao K, Zhou W Z, Xu H C, Hu X K, Wang M Z, Fan K Q, Wang Y J, Wang W D, Espinosa H D. Sci. China Mater., 2021, 64(8): 1977.

doi: 10.1007/s40843-020-1637-9     URL    
[29]
Park J, Kim M, Lee Y, Lee H S, Ko H. Sci. Adv., 2015, 1(9): e1500661.

doi: 10.1126/sciadv.1500661     URL    
[30]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K. Adv. Mater., 2016, 28(26): 5300.

doi: 10.1002/adma.201600408     URL    
[31]
Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S W, Kim J J, Kim S Y, Ko H. NPG Asia Mater., 2018, 10(4): 163.

doi: 10.1038/s41427-018-0031-8     URL    
[32]
Wang J, Tenjimbayashi M, Tokura Y, Park J Y, Kawase K, Li J T, Shiratori S. ACS Appl. Mater. Interfaces, 2018, 10(36): 30689.

doi: 10.1021/acsami.8b08933     URL    
[33]
Wang Y C, Chen J N, Mei D Q. Sens. Actuat. A Phys., 2020, 307: 111972.

doi: 10.1016/j.sna.2020.111972     URL    
[34]
Zhuang Y, Guo Y L, Li J, Yu Y Q, Jiang K Y, Zhang H, Guo S. Int. J. Adv. Manuf. Technol., 2021, 112(7/8): 2211.

doi: 10.1007/s00170-020-06560-8     URL    
[35]
Campos G H, Xi F. Appl. Ergon., 2020, 84: 103006.

doi: 10.1016/j.apergo.2019.103006     URL    
[36]
Borup K T, Fossen T I, Johansen T A. IEEE Trans. Aerosp. Electron. Syst., 2020, 56(3): 2157.

doi: 10.1109/TAES.2019.2945383     URL    
[37]
Shao T Y, Wu J N, Zhang Y H, Cheng Y R, Zuo Z Q, Lv H K, Ying M L, Wong C P, Li Z. Adv. Mater. Technol., 2020, 5(5): 2070027.

doi: 10.1002/admt.202070027     URL    
[38]
Su Q, Huang X, Lan K B, Xue T, Gao W, Zou Q. J. Micromech. Microeng., 2020, 30(1): 015009.

doi: 10.1088/1361-6439/ab5a2b     URL    
[39]
Hou X Y, Guo C F. Acta Phys. Sin., 2020, 69(17): 178102.

doi: 10.7498/aps.69.20200987     URL    
侯星宇, 郭传飞. 物理学报, 2020, 69(17): 178102. ).
[40]
Kwon D, Lee T I, Shim J, Ryu S, Kim M S, Kim S, Kim T S, Park I. ACS Appl. Mater. Interfaces, 2016, 8(26): 16922.

doi: 10.1021/acsami.6b04225     URL    
[41]
Wei P Q, Guo X L, Qiu X B, Yu D L. Nanotechnology, 2019, 30(45): 455501.

doi: 10.1088/1361-6528/ab3695     URL    
[42]
Qiu Z G, Wan Y B, Zhou W H, Yang J Y, Yang J L, Huang J, Zhang J M, Liu Q X, Huang S Y, Bai N N, Wu Z G, Hong W, Wang H, Guo C F. Adv. Funct. Mater., 2018, 28(37): 1870264.

doi: 10.1002/adfm.201870264     URL    
[43]
Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z N. Nat. Mater., 2010, 9(10): 859.

doi: 10.1038/nmat2834     pmid: 20835231
[44]
Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J M, Ahn J, Cho I, Jeong Y, Oh Y, Park I. ACS Appl. Mater. Interfaces, 2020, 12(1): 1698.

doi: 10.1021/acsami.9b20097     URL    
[45]
Chen M R, Luo W F, Xu Z Q, Zhang X P, Xie B, Wang G H, Han M. Nat. Commun., 2019, 10: 4024.

doi: 10.1038/s41467-019-12030-x     URL    
[46]
Stru¨mpler R, Glatz-Reichenbach J. J. Electroceramics, 1999, 3(4): 329.

doi: 10.1023/A:1009909812823     URL    
[47]
Li F C, Kong Z, Wu J H, Ji X Y, Liang J J. Acta Phys. Sin., 2021, 70(10): 1.
李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰. 物理学报, 2021, 70(10): 1. ).
[48]
Zhang W G, Xiao Y, Duan Y, Li N, Wu L L, Lou Y, Wang H, Peng Z C. ACS Appl. Mater. Interfaces, 2020, 12(43): 48938.

doi: 10.1021/acsami.0c12369     URL    
[49]
Feng C F, Yi Z F, Jin X, Seraji S M, Dong Y J, Kong L X, Salim N. Compos. B Eng., 2020, 194: 108065.

doi: 10.1016/j.compositesb.2020.108065     URL    
[50]
Zhang J P, Wang Z Y, Peng Z C. Adv. Theory Simul., 2021, 4(12): 2100247.

doi: 10.1002/adts.202100247     URL    
[51]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Adv. Mater., 2014, 26(21): 3451.

doi: 10.1002/adma.201305182     URL    
[52]
Shu Y, Tian H, Yang Y, Li C, Cui Y L, Mi W T, Li Y X, Wang Z, Deng N Q, Peng B, Ren T L. Nanoscale, 2015, 7(18): 8636.

doi: 10.1039/c5nr01259g     pmid: 25901569
[53]
Zhou X, Zhang Y N, Yang J, Li J L, Luo S, Wei D P. Nanomaterials, 2019, 9(4): 496.

doi: 10.3390/nano9040496     URL    
[54]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H. Adv. Mater., 2013, 25(46): 6692.

doi: 10.1002/adma.201303041     URL    
[55]
Chen X, Shao J, Tian H, Li X, Li S. Advanced materials and technologies., 2020, 5(7): 2000046.

doi: 10.1002/admt.202000046     URL    
[56]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z N. Adv. Funct. Mater., 2014, 24(34): 5427.

doi: 10.1002/adfm.201400712     URL    
[57]
Cho S H, Lee S W, Yu S, Kim H, Chang S, Kang D, Hwang I, Kang H S, Jeong B, Kim E H, Cho S M, Kim K L, Lee H, Shim W, Park C. ACS Appl. Mater. Interfaces, 2017, 9(11): 10128.

doi: 10.1021/acsami.7b00398     URL    
[58]
Zhu B W, Ling Y Z, Yap L W, Yang M J, Lin F G, Gong S, Wang Y, An T C, Zhao Y M, Cheng W L. ACS Appl. Mater. Interfaces, 2019, 11(32): 29014.

doi: 10.1021/acsami.9b06260     URL    
[59]
Cheng L, Wang R, Hao X, Liu G. Sensors, 2021, 21(1): 289.

doi: 10.3390/s21010289     URL    
[60]
Zhu B W, Niu Z Q, Wang H, Leow W R, Wang H, Li Y G, Zheng L Y, Wei J, Huo F W, Chen X D. Small, 2014, 10(18): 3625.

doi: 10.1002/smll.201401207     URL    
[61]
Wang X L, Xia Z D, Zhao C, Huang P, Zhao S F, Gao M, Nie J K. Sens. Actuat. A Phys., 2020, 312: 112147.

doi: 10.1016/j.sna.2020.112147     URL    
[62]
Lyu H B, Ping X Y, Gao R Q, Xu L L, Pan L J. Chin. J. Chem. Phys., 2017, 30(5): 603.

doi: 10.1063/1674-0068/30/cjcp1706126     URL    
[63]
Wan Y B, Qiu Z G, Huang J, Yang J Y, Wang Q, Lu P, Yang J L, Zhang J M, Huang S Y, Wu Z G, Guo C F. Small, 2018, 14(35): e1801657.
[64]
Li T, Luo H, Qin L, Wang X W, Xiong Z P, Ding H Y, Gu Y, Liu Z, Zhang T. Small, 2016, 12(36): 5042.

doi: 10.1002/smll.201600760     URL    
[65]
Tang X, Wu C Y, Gan L, Zhang T, Zhou T T, Huang J, Wang H, Xie C S, Zeng D W. Small, 2019, 15(10): e1804559.
[66]
Jian M Q, Xia K L, Wang Q, Yin Z, Wang H M, Wang C Y, Xie H H, Zhang M C, Zhang Y Y. Adv. Funct. Mater., 2017, 27(9): 1606066.

doi: 10.1002/adfm.201606066     URL    
[67]
Kang S B, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al-Sayari S, Kim D E, Kim D, Lee T. Adv. Electron. Mater., 2016, 2(12): 1600356.

doi: 10.1002/aelm.201600356     URL    
[68]
Han J W, Kim B, Li J, Meyyappan M. Appl. Phys. Lett., 2013, 102(19): 193104.

doi: 10.1063/1.4805025     URL    
[69]
Guan X, Wang Z Y, Zhao W Y, Huang H Y, Wang S P, Zhang Q, Zhong D X, Lin W E, Ding N, Peng Z C. ACS Appl. Mater. Interfaces, 2020, 12(23): 26137.

doi: 10.1021/acsami.0c03326     URL    
[70]
Ma Z H, Meng B, Wang Z Y, Yuan C C, Liu Z W, Zhang W G, Peng Z C. Nano Energy, 2020, 78: 105216.

doi: 10.1016/j.nanoen.2020.105216     URL    
[71]
Zhao T T, Li T K, Chen L L, Yuan L, Li X F, Zhang J H. ACS Appl. Mater. Interfaces, 2019, 11(32): 29466.

doi: 10.1021/acsami.9b09265     URL    
[72]
Jung Y, Lee W, Jung K, Park B, Park J, Ko J, Cho H. Polymers, 2020, 12(6): 1412.

doi: 10.3390/polym12061412     URL    
[73]
Zu G Q, Kanamori K, Maeno A, Kaji H, Nakanishi K. Angew. Chem. Int. Ed., 2018, 57(31): 9722.

doi: 10.1002/anie.201804559     URL    
[74]
Han S B, Alvi N U H, Granlöf L, Granberg H, Berggren M, Fabiano S, Crispin X. Adv. Sci., 2019, 6(8): 1802128.

doi: 10.1002/advs.201802128     URL    
[75]
Chen Y P, Hu L T, Li C C, Dang B K, Sun Q F, Zhai T Y, Li H Q. InfoMat, 2020, 2(6): 1225.

doi: 10.1002/inf2.12075     URL    
[76]
Gao Y, Xu M D, Yu G H, Tan J P, Xuan F Z. Sens. Actuat. A Phys., 2019, 299: 111625.

doi: 10.1016/j.sna.2019.111625     URL    
[77]
Yu L H, Li W P, Wei C H, Yang Q F, Shao Y L, Sun J Y. Nano Micro Lett., 2020, 12(1): 143.
[78]
Orangi J, Hamade F, Davis V A, Beidaghi M. ACS Nano, 2020, 14(1): 640.

doi: 10.1021/acsnano.9b07325     pmid: 31891247
[79]
Yang W Z, Liu Y, Xu W, Nie H Y. IEEE Sens. J., 2021, 21(9): 10473.

doi: 10.1109/JSEN.2021.3060281     URL    
[80]
Chen Y X, Deng Z R, Ri O Y, Zheng R H, Jiang Z Q, Bai H, Xue H. Nano Energy, 2021, 84: 105866.

doi: 10.1016/j.nanoen.2021.105866     URL    
[81]
Wang Z Y, Guan X, Huang H Y, Wang H F, Lin W E, Peng Z C. Adv. Funct. Mater., 2019, 29(11): 1970067.

doi: 10.1002/adfm.201970067     URL    
[82]
Zhao W Y, Wang Z Y, Zhang J P, Wang X P, Xu Y T, Ding N, Peng Z C. Adv. Mater. Technol., 2021, 6(8): 2001218.

doi: 10.1002/admt.202001218     URL    
[83]
Wang H H, Yang H M, Zhang S, Zhang L, Li J S, Zeng X Q. Adv. Mater. Technol., 2019, 4(9): 1900147.

doi: 10.1002/admt.201900147     URL    
[84]
Zhou Q, Ji B, Wei Y Z, Hu B, Gao Y B, Xu Q S, Zhou J, Zhou B P. J. Mater. Chem. A, 2019, 7(48): 27334.

doi: 10.1039/C9TA10489E     URL    
[85]
Mo L X, Meng X Y, Zhao J, Pan Y Q, Sun Z C, Guo Z X, Wang W, Peng Z C, Shang C, Han S B, Hu K, Cao M J, Chen Y J, Xin Z Q, Lu J S, Li L H. Flex. Print. Electron., 2021, 6(1): 014001.

doi: 10.1088/2058-8585/abe842     URL    
[86]
Xiao Y, Jiang S W, Liu P, Xue Z W, Zhu Y Y, Yu J T, Qiu J, Zhang W L. Smart Mater. Struct., 2019, 28(10): 105027.

doi: 10.1088/1361-665X/ab3af6     URL    
[87]
Lauter U, Kantor S W, Schmidt-Rohr K, MacKnight W J. Macromolecules, 1999, 32(10): 3426.

doi: 10.1021/ma981292f     URL    
[88]
Jing X, Ma Z P, Antwi-Afari M F, Wang L, Li H, Mi H Y, Feng P Y, Liu Y J. Ind. Eng. Chem. Res., 2021, 60(28): 10419.

doi: 10.1021/acs.iecr.1c01575     URL    
[89]
Liu F, Han F, Ling L, Li J H, Zhao S F, Zhao T, Liang X W, Zhu D L, Zhang G P, Sun R, Ho D, Wong C P. Chem. Eur. J., 2018, 24(63): 16823.

doi: 10.1002/chem.201803369     URL    
[90]
Peng Y X, Zhou J Z, Song X, Pang K, Samy A, Hao Z M, Wang J. Sensors, 2021, 21(2): 485.

doi: 10.3390/s21020485     URL    
[91]
Muthuraj R, Sachan A, Castro M, Feller J F, Seantier B, Grohens Y. J. Renew. Mater., 2018, 6(3): 277.
[92]
Jiang S W, Yu J T, Xiao Y, Zhu Y Y, Zhang W L. ACS Appl. Mater. Interfaces, 2019, 11(22): 20500.

doi: 10.1021/acsami.9b02659     URL    
[93]
Lin W E, He C B, Huang H Y, Zhao W Y, Qiu Y B, Guan X, Zhang Q, Wang Z Y, Peng Z C. Adv. Mater. Technol., 2020, 5(5): 2000008.
[94]
Wu J N, Yao Y G, Zhang Y H, Shao T Y, Wu H, Liu S Y, Li Z, Wu L M. Nanoscale, 2020, 12(41): 21198.

doi: 10.1039/D0NR06386J     URL    
[95]
Shi R L, Lou Z, Chen S, Shen G Z. Sci. China Mater., 2018, 61(12): 1587.

doi: 10.1007/s40843-018-9267-3     URL    
[96]
Sharma S, Chhetry A, Sharifuzzaman M, Yoon H, Park J Y. ACS Appl. Mater. Interfaces, 2020, 12(19): 22212.

doi: 10.1021/acsami.0c05819     URL    
[97]
Cheng Y F, Ma Y N, Li L Y, Zhu M, Yue Y, Liu W J, Wang L F, Jia S F, Li C, Qi T Y, Wang J B, Gao Y H. ACS Nano, 2020, 14(2): 2145.

doi: 10.1021/acsnano.9b08952     URL    
[98]
Han S B, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X. Adv. Funct. Mater., 2017, 27(44): 1703549.

doi: 10.1002/adfm.201703549     URL    
[99]
Wang L, Xu T, Zhang X. TrAC Trends in Analytical Chemistry, 2021, 134.
[100]
Li Z K, Zhang S M, Chen Y H, Ling H N, Zhao L B, Luo G X, Wang X C, Hartel M C, Liu H, Xue Y M, Haghniaz R, Lee K J, Sun W J, Kim H, Lee J M, Zhao Y C, Zhao Y P, Emaminejad S, Ahadian S, Ashammakhi N, Dokmeci M R, Jiang Z D, Khademhosseini A. Adv. Funct. Mater., 2020, 30(49): 2070326.

doi: 10.1002/adfm.202070326     URL    
[101]
Chang H, Kim S, Kang T H, Lee S W, Yang G T, Lee K Y, Yi H. ACS Appl. Mater. Interfaces, 2019, 11(35): 32291.

doi: 10.1021/acsami.9b10194     URL    
[102]
Asadnia M, Kottapalli A G P, Shen Z Y, Miao J M, Triantafyllou M. IEEE Sens. J., 2013, 13(10): 3918.

doi: 10.1109/JSEN.2013.2259227     URL    
[103]
Hua Q L, Sun J L, Liu H T, Bao R R, Yu R M, Zhai J Y, Pan C F, Wang Z L. Nat. Commun., 2018, 9: 244.

doi: 10.1038/s41467-017-02685-9     URL    
[104]
Zhang T, Li Z Y, Li K, Yang X N. Adv. Mater. Technol., 2019, 4(12): 1900679.

doi: 10.1002/admt.201900679     URL    
[105]
Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H, Bao Z N. Adv. Mater., 2015, 27(4): 634.

doi: 10.1002/adma.201403807     URL    
[106]
Mao R W, Yao W Q, Qadir A, Chen W Q, Gao W W, Xu Y, Hu H. Sens. Actuat. A Phys., 2020, 312: 112144.

doi: 10.1016/j.sna.2020.112144     URL    
[107]
Ma L Q, Yu X C, Yang Y Y, Hu Y G, Zhang X Y, Li H Y, Ouyang X, Zhu P L, Sun R, Wong C P. J. Materiomics, 2020, 6(2): 321.

doi: 10.1016/j.jmat.2019.12.008     URL    
[108]
Yin R Y, Wang D P, Zhao S F, Lou Z, Shen G Z. Adv. Funct. Mater., 2021, 31(11): 2008936.

doi: 10.1002/adfm.202008936     URL    
[109]
Zhang H J, Han W Q, Xu K, Zhang Y, Lu Y F, Nie Z T, Du Y H, Zhu J X, Huang W. Nano Lett., 2020, 20, 3449.
[110]
Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J, Ahn J, Cho I, Jeong Y, Oh Y, Park I. ACS Appl. Mater. Interfaces, 2020, 12(1): 1698.

doi: 10.1021/acsami.9b20097     URL    
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[3] 廖金花, 高佳俊, 王宇超, 孙巍. 微结构化弹性体介电层的制备方法与应用[J]. 化学进展, 2021, 33(6): 975-987.
[4] 黄威嫔, 任科峰, 计剑. 聚合物材料表面微结构调控新策略[J]. 化学进展, 2020, 32(10): 1494-1503.
[5] 熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 微纳结构柔性压力传感器的制备及应用[J]. 化学进展, 2019, 31(6): 800-810.
[6] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[7] 李啸, 艾玲, 张景, 张贤鹏, 鲁越晖, 宋伟杰. 透明防雾材料[J]. 化学进展, 2018, 30(6): 864-871.
[8] 段树铭, 任晓辰*, 张小涛, 程姗姗, 胡文平*. 丝网印刷柔性电子器件[J]. 化学进展, 2018, 30(4): 429-438.
[9] 杨露姣, 张颖, 程璇. 先驱体转化法制备硅硼碳氮陶瓷的结构与性能[J]. 化学进展, 2016, 28(2/3): 308-316.
[10] 黄春玉,吕男,迟力峰. 利用Langmuir-Blodgett技术构筑表面微结构的方法*[J]. 化学进展, 2007, 19(06): 852-859.
[11] 刘振宇,郑经堂,王茂章,张碧江. 多孔炭的纳米结构及其解析[J]. 化学进展, 2001, 13(01): 10-.