English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 434-453 DOI: 10.7536/PC190633 前一篇   后一篇

• •

开关型Pickering乳液体系

田诗伟, 毛国梁*(), 张珈瑜, 历娜, 姜梦圆, 吴韦   

  1. 东北石油大学化学化工学院 石油与天然气化工省重点实验室 大庆 163318
  • 收稿日期:2019-07-01 修回日期:2019-08-20 出版日期:2020-04-05 发布日期:2019-12-12
  • 通讯作者: 毛国梁
  • 作者简介:
    * 通信作者 Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(51534004, U1362110)

Switchable Pickering Emulsion System

Shiwei Tian, Guoliang Mao*(), Jiayu Zhang, Na Li, Mengyuan Jiang, Wei Wu   

  1. Provincial Key Laboratory of Oil and Gas Chemical Technology, School of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
  • Received:2019-07-01 Revised:2019-08-20 Online:2020-04-05 Published:2019-12-12
  • Contact: Guoliang Mao
  • Supported by:
    the National Natural Science Foundation of China(51534004, U1362110)

Pickering乳液以胶体尺寸的固体粒子代替传统表面活性剂作为稳定剂,具有超稳定,生物相容性好以及对环境友好等优点。开关型Pickering乳液可随pH值、CO2/N2浓度、温度、磁场强度及光强度等条件的变化而改变固体乳化剂的表面润湿性,实现在“乳化”与“破乳”之间的快速转换,在非均相催化、乳液聚合等诸多领域有广泛的应用前景。本文全面总结了近年来开关型Pickering乳液的研究进展及其在界面催化系统、液膜处理有机废水、药物的包封与释放等方面的应用。

Pickering emulsion uses solid particles of colloidal size instead of traditional surfactants as stabilizer, which has the advantages like ultra-stability, biocompatibility, environmental friendliness and so on. Switchable Pickering emulsion is able to change the surface wettability of the solid emulsifier with changes of pH, CO2/N2 concentration, magnetic field, temperature or light intensity. The characteristics of fast conversion between “emulsification” and “demulsification” can meet the demand for transient stability of emulsion in heterogeneous catalysis, emulsion polymerization and so on, so it has a wide application prospect. This paper comprehensively summarizes the research and development of switchable Pickering emulsion in recent years and its application in interface catalytic system, treatment of organic wastewater by liquid membrane, encapsulation and release of drugs, etc.

Contents

1 Introduction

2 Preparation and stability of Pickering emulsion

2.1 Preparation of Pickering emulsion

2.2 Stability and influencing factors of Pickering emulsion

3 Switchable Pickering emulsion

3.1 pH trigger

3.2 CO2/N2 trigger

3.3 Magnetic trigger

3.4 Thermo trigger

3.5 Light trigger

4 Application of switchable Pickering emulsion

4.1 Catalytic system

4.2 Wastewater treatment

4.3 Encapsulation and release of drugs

4.4 Release and recovery nanoparticles of macroporous polymer

4.5 Biology

5 Conclusion and outlook

()
表1 由多类型颗粒制备的Pickering乳液
Table 1 Pickering emulsion stabilized by various types of particles
Entry Particles
(Types)
Particle (wettability) Modifiers/surfactants Emulsions ref
1 Inorganic Silica nanoparticles (hydrophilicity) Hydrophilicity: methyl poly(ethylene glycol)
and Hydrophobicity: organosilanes
O/W 53
2 Inorganic Silica nanoparticles (hydrophilicity) (MeO)3SiCH2CH2CH2(NHCH2CH2)2NH2 W/O 31
3 Inorganic Silica nanoparticles (hydrophilicity) Tween 80 (non-ionic) and Span 80 (non-ionic) O/W 55
4 Inorganic Silica submicronic particles (hydrophilicity) Didodecyldimethylammoniumbromide (cationic) W/O 56
5 Inorganic Silica nanoparticles (hydrophilicity) (3-aminopropyl)triethoxysilane (APTES) O/W 57
6 Inorganic Silica nanoparticles (hydrophilicity) APTES、Glutaraldehyde、Hemoglobin O/W 58
7 Inorganic Silica nanoparticles (hydrophilicity) Dichlorodimethylsilane W/O 59
8 Inorganic Titania nanoparticles (hydrophilicity)
Titaniananoparticles (hydrophobicity) and Super
(MeO)3SiCH3 (0.4 or 4 mmol/g) O/W or W/O 60
9 Inorganic paramagnetic iron oxide nanoparticles
(hydrophilicity)
TiO2:seven-carbon chain silane
Fe3O4:three-carbon chain silane
W/O 44
10 Inorganic Calcium carbonate nanoparticles
(hydrophilicity)
Sodium dodecyl sulfate (SDS) or
Sodium 2-ethylhexylsulfosuccinate (AOT)
O/W to W/O
to O/W
61
11 Inorganic Calcium carbonate nanoparticles
(hydrophilicity)
AOT (anionic) O/W to W/O 62
12 Inorganic Zinc oxide nanoparticles (hydrophilicity) N,N'-bis(dimethylalkyl)-α,ω-
alkanediammonium dibromide(cationic)
O/W 63
13 Inorganic Montmorillonite nanoparticles
(hydrophilicity)
bis(2-hydroxyethyl)oleylamine (oil soluble) O/W 64
14 Inorganic Kaolinite nanoparticles (hydrophilicity) SPAN-80 (non-ionic) O/W to W/O 33
15 Inorganic Palygorskite nanoparticles (hydrophilicity) Poly(2-(diethylamino)ethyl methacrylate (PDEAEMA) W/O to O/W 65
16 Inorganic Graphene oxide nanoparticles
(hydrophilicity)
Carboxyl be reversibly protonated (at different pH) O/W 66
17 Inorganic Carbon black nanoparticles (hydrophilicity) para-amino benzoic acid (added acid or salt) O/W 67
18 Organic Polystyrene latex nanoparticles (hydrophilicity) [PDMA-PMMA] diblock copolymer O/W 68
19 Organic Polystyrene(PS)microparticles
PS:hydrophobicity; PS:hydrophilicity;
A-PS:hydrophilicity
PS): (—COOH)、(—NH2)、(—SO3H)
PS): (—COOH)
A-PS):polystyrene
O/W 69
20 Organic Starch nanocrystals (hydrophilicity) Sodium azide O/W 70
21 Organic Starch-based nanoparticles (hydrophilicity) PDMAEMA O/W 71
22 Organic Polylactic acid nanoparticles (hydrophilicity) Cashew tree gum O/W 72
23 Organic Calcium alginate nanoparticles (hydrophilicity) Ionic gelation between Ca2+ and —COO- O/W 73
24 Organic Nanofibers from bacterial cellulose
(hydrophilicity)
O/W 74
25 Organic Lignin microparticles (hydrophilicity) O/W 75
26 Organic Soy protein-jackfruitfilum pectin nanoparticles
(amphiphilicity)
O/W 76
图1 Pickering乳液稳定机理示意图
Fig. 1 Schematic diagram of the stability mechanism of Pickering emulsion
图2 Pickering乳液连续相的三维网状机理示意图[77]
Fig. 2 Schematic diagram of the three-dimensional network structure of Pickering emulsion continuous phase[77]
图3 三相接触角θ示意图
Fig. 3 Schematic diagram of three-phase contact angle θ
图4 PZS微球的制备[82]
Fig. 4 Preparation of PZS microspheres[82]
图5 羧基甜菜碱分子与SiO2颗粒在碱性介质中的去疏水化(a)及在酸性水介质中的原位疏水化(b)[32]
Fig. 5 Dehydro-phobicization of carboxylated betaine mole-cules and silica particles in alkaline media(a) and in situ hydrophobization in acidic aqueous media (b)[32]. Copyrihgt 2017, American Chemical Society.
图6 PDMA-b-PAPBA嵌段共聚物的合成步骤[43]
Fig. 6 The synthesis route of PDMA-b-PAPBA diblock copolymer[43]
表2 非共价修饰的CO2/N2开关型Pickering乳液乳化剂
Table 2 Non-covalently modified CO2/N2 switchable Pickering emulsion emulsifier
图7 DMDEA的CO2/N2响应性[21]
Fig. 7 The CO2/N2 responsiveness of DMDEA[21]
图8 AZO-B4的CO2/N2及光双重响应性[14]
Fig. 8 The CO2/N2 and light dual stimuli responses of AZO-B4[14]
图9 以SeTA修饰SiO2制备的CO2/N2及氧化还原双重响应性Pickering乳液示意图36]
Fig. 9 Schematic illustration of CO2/N2 and redox dual responsive Pickering emulsion prepared by the modified silica with SeTA[36]. Copyrihgt 2017, American Chemical Society
图10 C14PAO的非离子态及离子态形式[24]
Fig. 10 Non-ionized and ionized forms of C14PAO[24]
图11 正癸烷/水乳液的破乳及再稳定[101]
Fig. 11 The demulsification/re-stabilization cycles of n-decane-in-water emulsion[101]. Copyrihgt 2019, American Chemical Society
图12 功能化CO2响应性颗粒的制备[102]
Fig. 12 Preparation of functionalizing CO2-responsive particles[102]
表3 磁性开关型Pickering乳液系统
Table 3 Magentic switchable Pickering emulsion systems
图13 SiO2协同C12En制备的热开关型Pickering乳液[121]
Fig. 13 Thermo-switchable Pickering emulsion prepared by silica in combination with $C_{12}E_{n}^{121}$. Copyrihgt 2017, American Chemical Society
图14 光磁双重响应性W/O型Pickering乳液微反应器系统示意图。(a)静态磁场作用下两颗液滴相互靠近。(b)紫外光照射后的聚结与化学反应[44]
Fig. 14 Schematic illustration of light and magnetic dual-responsive W/O Pickering emulsion micro-reactor system[44].(a)Two droplets approach each other under the action of static magnetic field,(b)coalescence and chemical reaction following UV irradiation. Copyrihgt 2017, American Chemical Society
图15 Pickering乳液微反应器中的原位有机反应[132]
Fig. 15 In situ organic reactions in Pickering emulsion microreactors[132]
图16 pH值开关型Pickering乳液催化策略示意图[31]
Fig. 16 Schematic illustration of the pH-switchable Pickering emulsion catalytic strategy[31]. Copyrihgt 2015, Royal Society of Chemistry
图17 基于纳米级磁性搅拌棒Pickering乳液体系中的反应示意图[134]
Fig. 17 Schematic illustration of the reaction in the Pickering emulsion system based on nanoscale magnetic stirring bars[134]. Copyrihgt 2018, Royal Society of Chemistry
图18 Pickering乳液液膜体系示意图[137]
Fig. 18 Schematic illustration of the Pickering emulsion liquid membrane system[137]
图19 Pickering乳液液膜的界面传质机理[137]
Fig. 19 The mechanism of mass transfer interface of Pickering emulsion liquid membrane[137]
图20 IL/W型Pickering乳液对废水中有机污染物的萃取机理[30]4.3 在药物的包封与释放中的应用
Fig. 20 Mechanism of organic pollutants in wastewater extracted by IL/W Pickering emulsion[30]
图21 光开关型Pickering乳液的包封及释放策略[138]
Fig. 21 The strategy for encapsulation and release of the light-responsive Pickering emulsion[138]. Copyright 2013, American Chemical Society
[1]
郭爽(Guo S), 陈志强(Chen Z Q), 任笑菲(Ren X F), 张永民(Zhang Y M), 刘雪锋(Zhang X F) 化学进展(Progress in Chemistry), 2017,29(7):695.
[2]
Wang F, Tang J T, Liu H, Yu G P , Zou Y P. Mater. Chem. Front., 2019,3(3):356. http://xlink.rsc.org/?DOI=C8QM00540K

doi: 10.1039/C8QM00540K     URL    
[3]
Tang J T, Quinlan P J, Tam K C . Soft Matter, 2015,11(18):3512.
[4]
Binks B P. Curr. Opin. Colloid Interface Sci., 2002,7(1):21.
[5]
Xue N, Zhang G H, Zhang X M, Yang H Q. Chem. Commun , 2018,54(92):13014.
[6]
Zhou X, Li W P, Zhu L Q, Ye H , Liu H C. RSC Adv., 2019,9(4):1782.
[7]
Shen X T, Bonde J S, Kamra T, Bülow L, Leo J C, Linke D, Ye L. . Angew. Chem, 2014,53(40):10687. http://doi.wiley.com/10.1002/anie.201406049

doi: 10.1002/anie.201406049     URL    
[8]
Jiménez-Saelices C, Seantier B, Grohens Y, Capron I. ACS Appl. Mater. Interfaces, 2018,10(18):16193. https://pubs.acs.org/doi/10.1021/acsami.8b02418

doi: 10.1021/acsami.8b02418     URL    
[9]
Xia Y F, Wu J, Wei W, Du Y Q, Wan T, Ma X W, An W Q, Guo A Y, Miao C Y, Yue H, Li S G, Cao X T, Su Z J , Ma G H. Nat. Mater., 2018,17:187. http://www.nature.com/articles/nmat5057

doi: 10.1038/nmat5057     URL    
[10]
Wiese S, Spiess A C , Richtering W. Angew. Chem. Int. Edit., 2013,52(2):576. e30966b2-1a4c-4558-9143-0605f1586cefhttp://dx.doi.org/10.1002/anie.201206931

doi: 10.1002/anie.201206931     URL    
[11]
Liu Y X, Jessop P G, Cunningham M, Eckert C A, Liotta C L . Science, 2006,313(5789):958. https://www.sciencemag.org/lookup/doi/10.1126/science.1128142

doi: 10.1126/science.1128142     URL    
[12]
Brunier B, Shebat-Othman N, Chevalier Y, Bourgeat-Lami E . Aiche J, 2018,64(7):2612. http://doi.wiley.com/10.1002/aic.v64.7

doi: 10.1002/aic.v64.7     URL    
[13]
Geng J M, Pu J Y, Wang L Z, Bai B J . Fuel, 2018,223:140. https://linkinghub.elsevier.com/retrieve/pii/S0016236118304526

doi: 10.1016/j.fuel.2018.03.046     URL    
[14]
Jiang J Z, Ma Y X, Cui Z G, Binks B P . Langmuir, 2016,32(34):8668. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b01475

doi: 10.1021/acs.langmuir.6b01475     URL    
[15]
Thompson K L, Fielding L A, Mykhaylyk O O, Lane J A, Derry M J , Armes S P. Chem. Sci., 2015,6(7):4207.
[16]
刘凯鸿(Liu K H), 林琪(Lin Q), 崔正刚(Cui Z G), 裴晓梅(Pei X M), 蒋建中(Jiang J Z) 高等学校化学学报(Chemical Research in Chinese Universities), 2017,38(1):85.
[17]
Zoppe J O, Venditti R A, Rojas O J . J Colloid Interf. Sci., 2012,369(1):202. https://linkinghub.elsevier.com/retrieve/pii/S0021979711015001

doi: 10.1016/j.jcis.2011.12.011     URL    
[18]
Sharma T, Kumar G S , Sangwai J S. Ind. Eng. Chem. Res., 2015,54(5):1576.
[19]
Chen Z W, Zhou L, Bing W, Zhang Z J, Li Z H, Ren J S, Qu S G .J Am. Chem. Soc., 2014,136(20):7498. bc619035-cbb4-4bff-9fdf-2b6437dbc82ehttp://dx.doi.org/10.1021/ja503123m

doi: 10.1021/ja503123m     URL    
[20]
Anwar N, Willms T, Grimme B , Kuehne A J C ACS Macro Lett., 2013,2(9):766. https://pubs.acs.org/doi/10.1021/mz400362g

doi: 10.1021/mz400362g     URL    
[21]
Jiang J Z, Zhu Y, Cui Z G , Binks B P. Angew. Chem. Int. Edit., 2013,52(47):12373.
[22]
Zhang Y M, Guo S, Wu W T, Qin Z R, Liu X F . Langmuir, 2016,32(45):11861. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b03034

doi: 10.1021/acs.langmuir.6b03034     URL    
[23]
Xu M D, Zhang W Q, Pei X M, Jiang J Z, Cui Z G , Binks B P. RSC Adv., 2017,7(47):29742. http://xlink.rsc.org/?DOI=C7RA03722H

doi: 10.1039/C7RA03722H     URL    
[24]
Zhang Y M, Ren X F, Guo S, Liu X F , Fang Y. ACS Sustainable Chem. Eng., 2018,6(2):2641. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b04162

doi: 10.1021/acssuschemeng.7b04162     URL    
[25]
孔伟伟(Kong W W), 郭爽(Guo S), 张永民(Zhang Y M), 刘雪锋(Liu X F) 物理化学学报(Acta Physico-Chimica Sinica), 2017,33(6):1205.
[26]
Quesada M, Muniesa C, Botella P . Chem.Mater, 2013,25(13):2597.
[27]
Yuan J, Deng A, Yang D G, Li H M, Chen J, Gao Y . Polymer, 2018,158:1. https://linkinghub.elsevier.com/retrieve/pii/S0032386118309704

doi: 10.1016/j.polymer.2018.10.043     URL    
[28]
Zhou J, Qiao X Y, Binks B P, Sun K, Bai M W, Li Y L, Liu Y . Langmuir, 2011,27(7):3308. https://pubs.acs.org/doi/10.1021/la1036844

doi: 10.1021/la1036844     URL    
[29]
Peng J X, Liu Q X, Xu Z H , Masliyah J. Adv. Funct. Mater., 2012,22(8):1732.
[30]
Yang H R, Zhang H X, Peng J X, Zhang Y Y, Du G Q, Fang Y .J Colloid Interface Sci., 2017,485:213. https://linkinghub.elsevier.com/retrieve/pii/S0021979716306786

doi: 10.1016/j.jcis.2016.09.023     URL    
[31]
Huang J P , Yang H Q. Chem. Commun., 2015,51(34):7333. http://xlink.rsc.org/?DOI=C5CC01211B

doi: 10.1039/C5CC01211B     URL    
[32]
Liu K H, Jiang J Z, Cui Z G, Binks B P . Langmuir, 2017,33(9):2296. https://pubs.acs.org/doi/10.1021/acs.langmuir.6b04459

doi: 10.1021/acs.langmuir.6b04459     URL    
[33]
Nallamilli T , Basavaraj M G. Appl. Clay Sci., 2017,148:68. https://linkinghub.elsevier.com/retrieve/pii/S0169131717303423

doi: 10.1016/j.clay.2017.07.038     URL    
[34]
Nguyen B T, Wang W K, Saunders B R, Benyahia L, Nicolai T . Langmuir, 2015,31(12):3605. https://pubs.acs.org/doi/10.1021/la5049024

doi: 10.1021/la5049024     URL    
[35]
Tu F Q, Lee D .J Am. Chem. Soc., 2014,136(28):9999. c35ce08e-d0d4-4caa-8b93-61a8a955125fhttp://dx.doi.org/10.1021/ja503189r

doi: 10.1021/ja503189r     URL    
[36]
Zhang Y M, Guo S, Ren X F, Liu X F, Fang Y . Langmuir, 2017,33(45):12973. https://pubs.acs.org/doi/10.1021/acs.langmuir.7b02976

doi: 10.1021/acs.langmuir.7b02976     URL    
[37]
Chen Q J, Xu Y Y, Cao X T, Qin L J , An Z S. Polym. Chem., 2014,5(1):175.
[38]
Chen Y, Bai Y K, Chen S B, Ju J P, Li Y Q, Wang T M , Wang Q H. ACS Appl. Mater Interfaces, 2014,6(16):13334. https://pubs.acs.org/doi/10.1021/am504124a

doi: 10.1021/am504124a     URL    
[39]
Fameau A L, Lam S , Velev O D. Chem. Sci., 2013,4(10):3874. 6c6ddba6-a075-4229-b228-b9b46bef733fhttp://dx.doi.org/10.1039/c3sc51774h

doi: 10.1039/c3sc51774h     URL    
[40]
Tang J T , Lee M F X, Zhang W, Zhao B X, Berry R M, Tam K C Biomacromolecules, 2014,15(8), 3052. d73e17f6-66ef-47fd-91ef-66e229e5dba3http://dx.doi.org/10.1021/bm500663w

doi: 10.1021/bm500663w     URL    
[41]
Yang H L, Liang F X, Wang X, Chen Y, Zhang C L, Wang Q, Qu X Z, Li J L, Wu D C, Yang Z Z . Macromolecules, 2015,46(7):2754. https://pubs.acs.org/doi/10.1021/ma400261y

doi: 10.1021/ma400261y     URL    
[42]
Wang X F, Shi Y, Graff R W, Lee D Y, Gao H F . Polymer, 2015,72, 361. https://linkinghub.elsevier.com/retrieve/pii/S0032386114011562

doi: 10.1016/j.polymer.2014.12.056     URL    
[43]
Guo H Z, Yang D G, Yang M, Gao Y, Liu Y J, Li H M . Soft Matter, 2016,12(48):9683. http://xlink.rsc.org/?DOI=C6SM02336C

doi: 10.1039/C6SM02336C     URL    
[44]
Xie C Y, Meng S X, Xue L H, Bai R X, Yang X, Wang Y L, Qiu Z P, Binks B P, Guo T, Meng T . Langmuir, 2017,33(49):14139. https://pubs.acs.org/doi/10.1021/acs.langmuir.7b03642

doi: 10.1021/acs.langmuir.7b03642     URL    
[45]
Guo S, Zhang Y M . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2019,562:119. https://linkinghub.elsevier.com/retrieve/pii/S0927775718316911

doi: 10.1016/j.colsurfa.2018.11.012     URL    
[46]
Jiang Q Y, Sun N, Li Q H, Si W M, Li J, Li A X, Gao Z L, Wang W W, Wang J R . Langmuir, 2019,35:5848. https://pubs.acs.org/doi/10.1021/acs.langmuir.9b00250

doi: 10.1021/acs.langmuir.9b00250     URL    
[47]
杨飞(Yang F), 王君(Wang J), 蓝强(Lan Q), 孙德军(Sun D J), 李传宪(Li C X). 化学进展(Progress in Chemistry), 2009,21(708):1418. 0e2a4cd0-1546-4e63-8471-b68556ea19a0http://www.progchem.ac.cn//CN/abstract/abstract10072.shtml
[48]
Melle S, Lask M, Fuller G G . Langmuir, 2005,21(6):2158. https://pubs.acs.org/doi/10.1021/la047691n

doi: 10.1021/la047691n     URL    
[49]
Thickett S C, Teo G H. Polym. Chem , 2019,10(23):2906. http://xlink.rsc.org/?DOI=C9PY00097F

doi: 10.1039/C9PY00097F     URL    
[50]
Ding Y, Xu H, Wu H H, He M Y, Wu P . Chem. Commun, 2018,54(57):7932. http://xlink.rsc.org/?DOI=C8CC03267J

doi: 10.1039/C8CC03267J     URL    
[51]
Binks B P, Olusanya S O . Langmuir, 2018,34(17):5040. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b00715

doi: 10.1021/acs.langmuir.8b00715     URL    
[52]
Binks B P. Phys. Chem. Chem. Phys., 2007,9(48):6298. http://xlink.rsc.org/?DOI=b716587k

doi: 10.1039/b716587k     URL    
[53]
Björkegren S, Nordstierna L, Törncrona A, Palmqvist A .J Colloid Interface Sci., 2017,487:250. https://linkinghub.elsevier.com/retrieve/pii/S002197971630786X

doi: 10.1016/j.jcis.2016.10.031     URL    
[54]
Wei W, Wang T, Luo J, Zhu Y, Gu Y, Liu X Y . Colloids and Surfaces A: Physicochem. Eng Aspects, 2015,487:58. https://linkinghub.elsevier.com/retrieve/pii/S0927775715302508

doi: 10.1016/j.colsurfa.2015.09.060     URL    
[55]
Jiang J, Cao J Z, Wang W, Shen H Y . Holzforschung, 2018,72(6):489. http://www.degruyter.com/view/j/hfsg.2018.72.issue-6/hf-2017-0154/hf-2017-0154.xml

doi: 10.1515/hf-2017-0154     URL    
[56]
Lebdioua K, Aimable A, Cerbelaud M, Videcoq A, Peyratout C .J Colloid Interface Sci., 2018,520:127. https://linkinghub.elsevier.com/retrieve/pii/S0021979718302613

doi: 10.1016/j.jcis.2018.03.019     URL    
[57]
Yaakov N, Mani K A, Felfbaum R, Lahat M, Costa N D, Belausov E, Ment D, Mechrez G . ACS Omega, 2018,3(10):14294. https://pubs.acs.org/doi/10.1021/acsomega.8b02225

doi: 10.1021/acsomega.8b02225     URL    
[58]
Pan Y C, Qiu W, Li Q, Zhu S H, Lin C X, Zeng W B, Xiong X Q, Liu X Y, Lin Y H . Chemcatchem, 2019,11(7):1878. https://onlinelibrary.wiley.com/toc/18673899/11/7

doi: 10.1002/cctc.v11.7     URL    
[59]
Meng Z X, Zhang M , Yang H Q. Green Chem., 2019,21(3):627. http://xlink.rsc.org/?DOI=C8GC03585G

doi: 10.1039/C8GC03585G     URL    
[60]
Zhang Y B, Zhang M, Yang H Q . ChemCatChem, 2018,10(22):5224. http://doi.wiley.com/10.1002/cctc.v10.22

doi: 10.1002/cctc.v10.22     URL    
[61]
Cui Z G, Cui C F, Zhu Y, Binks B P . Langmuir, 2012,28(1):314. https://pubs.acs.org/doi/10.1021/la204021v

doi: 10.1021/la204021v     URL    
[62]
Cui Z G, Cui Y Z, Cui C F, Chen Z, Binks B P . Langmuir, 2010,26(15):12567. https://pubs.acs.org/doi/10.1021/la1016559

doi: 10.1021/la1016559     URL    
[63]
Moghadam T F, Azizian S, Wettig S .J Colloid Interface Sci., 2017,486:204. https://linkinghub.elsevier.com/retrieve/pii/S0021979716307329

doi: 10.1016/j.jcis.2016.09.069     URL    
[64]
Dong J N, Worthen A J, Foster L M, Chen Y S, Cornell K A, Bryant S L, Truskett T M, Bielawski C W , Johnston K P. ACS Appl.Mater. Interfaces, 2014,6(14):11502.
[65]
Lu J, Zhou W, Chen J, Jin Y L, Walters K B, Ding S J . RSC Adv, 2015,5(13):9416. http://xlink.rsc.org/?DOI=C4RA14109A

doi: 10.1039/C4RA14109A     URL    
[66]
Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J X .J Am. Chem. Soc., 2010,132(23):8180. https://pubs.acs.org/doi/10.1021/ja102777p

doi: 10.1021/ja102777p     URL    
[67]
Saha A, Nikova A, Venkataraman P, John V T, Bose A . ACS Appl. Mater. Interfaces, 2013,5(8):3094. https://pubs.acs.org/doi/10.1021/am3032844

doi: 10.1021/am3032844     URL    
[68]
Amalvy J I, Armes S P, Binks B P, Rodrigues J A , Unali G F. Chem. Commun., 2003,9(15):1826.
[69]
Dai L L, Tarimala S, Wu C Y, Guttula S, Wu J . Scanning, 2010,30(2):87. http://doi.wiley.com/10.1002/%28ISSN%290161-0457

doi: 10.1002/(ISSN)0161-0457     URL    
[70]
Li C, Sun P D, Yang C . Starch-Starke, 2012,64(6):497. http://doi.wiley.com/10.1002/star.v64.6

doi: 10.1002/star.v64.6     URL    
[71]
Qi L, Luo Z G , Lu X X. Green Chem., 2018,20(7):1538. http://xlink.rsc.org/?DOI=C8GC00143J

doi: 10.1039/C8GC00143J     URL    
[72]
Richter A R , Feitosa J P A, Paula H C B, Goycoolea F M, Paula R C M D Colloid Surface B, 2018,164:201. https://linkinghub.elsevier.com/retrieve/pii/S0927776518300237

doi: 10.1016/j.colsurfb.2018.01.023     URL    
[73]
Zhang W J, Sun X, Fan X L, Li M, He G H. J Dispersion Sci. Technol., 2017,39(3):367. https://www.tandfonline.com/doi/full/10.1080/01932691.2017.1320223

doi: 10.1080/01932691.2017.1320223     URL    
[74]
Zhai X C, Lin D H, Liu D J , Yang X B. Food Res. Int., 2017,103:12. https://linkinghub.elsevier.com/retrieve/pii/S0963996917307111

doi: 10.1016/j.foodres.2017.10.030     URL    
[75]
Pang Y X, Li X, Wang S W, Qiu X Q, Yang D J , Lou H M. React. Funct. Polym., 2018,123:115. https://linkinghub.elsevier.com/retrieve/pii/S1381514817303103

doi: 10.1016/j.reactfunctpolym.2017.12.018     URL    
[76]
Jin B, Zhou X S, Guan J M, Yan S L, Xu J Y, Chen J W .J Dispersion Sci. Technol., 2019,40(6):909. https://www.tandfonline.com/doi/full/10.1080/01932691.2018.1489277

doi: 10.1080/01932691.2018.1489277     URL    
[77]
Lagaly G, Reese M , Abend S. Appl. Clay Sci., 1999,14(1/3):83.
[78]
谭伟强(Tan W Q), 臧渡洋(Zang D Y), 李云飞(Li Y F), 张永建(Zhang Y J), 陆晨君(Lu C J), 栗志广(Jia Z G) 高等学校化学学报(Chemical Research in Chinese Universities), 2014,35(1):85. 30338b14-38ff-4c62-935b-be51095fbe93http://www.cjcu.jlu.edu.cn/CN/abstract/abstract24992.shtml

doi: 10.7503/cjcu20130905     URL    
[79]
Kaptay G. and Colloids Surfaces A: Physicochem. Eng. Aspects, 2006,282/283:387. https://linkinghub.elsevier.com/retrieve/pii/S0927775705009775

doi: 10.1016/j.colsurfa.2005.12.021     URL    
[80]
Zhang Q, Bai R X, Guo T, Meng T . ACS Appl Mater Interfaces, 2015,7(33):18240. https://pubs.acs.org/doi/10.1021/acsami.5b06808

doi: 10.1021/acsami.5b06808     URL    
[81]
Yang F, Niu Q, Lan Q, Sun D J .J Colloid Interface Sci., 2007,306(2):285. https://linkinghub.elsevier.com/retrieve/pii/S002197970600957X

doi: 10.1016/j.jcis.2006.10.062     URL    
[82]
Zhang X Y, Ren S M, Han T W, Hua M Q, He S F . Colloids and Surfaces A: Physicochem. Eng Aspects, 2018,542:42. https://linkinghub.elsevier.com/retrieve/pii/S0927775718300402

doi: 10.1016/j.colsurfa.2018.01.034     URL    
[83]
Briggs T R. Ind. Eng. Chem., 2002,13(11):1008.
[84]
林兆云(Lin Z Y). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2016.
[85]
易成林(Yi CL), 杨轶群(Yang Y Q), 江金强(Jiang J Q), 刘晓亚(Liu X Y), 江明(Jiang M) 化学进展(Progress in Chemistry), 2011,23(1):65.
[86]
Dai S, Ravi P, Tam K C . Soft Matter, 2008,4(3):435.
[87]
Fujii S, Cai Y L , Weaver J V M, Armes S P. . J. Am. Chem. Soc., 2005,127(20):7304.
[88]
Binks B P , Lumsdon S O. Phys. Chem. Chem. Phys., 2000,2(2):2959.
[89]
Dyab A K F . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012,402(1):2.
[90]
Shahid S, Rajesh S, Basavaraj M G . Langmuir, 2018,34(17):5060.
[91]
Qin S Y, Yong X . Soft Matter, 2019,15(16):3291.
[92]
Raju R R, Liebig F, Klemke B, Koetz J . Colloid Polym. Sci., 2018,296(6):1039.
[93]
Zhang Y M, An P Y, Liu X F, Fang Y , Hu X Y. Colloid Polym. Sci., 2015,293(2):357. http://link.springer.com/10.1007/s00396-014-3421-7

doi: 10.1007/s00396-014-3421-7     URL    
[94]
Su X, Jessop P G, Cunningham M F . Macromolecules, 2012,45(2):666.
[95]
Zhang Y M, Feng Y J .J Colloid Interface Sci., 2015,447:173.
[96]
Guo Z R, Feng Y J, He S, Qu M Z, Chen H L, Liu H B, Wu Y F, Wang Y . Adv. Mater, 2013,25(4):584.
[97]
Jessop P G, Heldebrant D J, Li X W, Eckert C A, Liotta C L . Nature, 2005,436(7054):1102.
[98]
Wang S, Liu D F, Zhao J H, Li X J, Xu D X, Gu Y, Lu H S . J. CO2 Util., 2018,26:239.
[99]
Zhang Y M, Feng Y J, Wang Y J, Li X L . Langmuir, 2013,29(13):4187. https://pubs.acs.org/doi/10.1021/la400051a

doi: 10.1021/la400051a     URL    
[100]
Shi Y L, Xiong D Z, Chen Y K, Wang H Y, Wang J J .J Mol. Liq., 2019,274:239.
[101]
Xu M D, Xu L F, Lin Q, Pei X M, Jiang J Z, Zhu H Y, Cui Z G, Binks B P . Langmuir, 2019,35(11):4058. https://pubs.acs.org/doi/10.1021/acs.langmuir.8b04159

doi: 10.1021/acs.langmuir.8b04159     URL    
[102]
Liang C, Liu Q X , Xu Z H. ACS Appl. Mater. Interfaces, 2014,6(9):6898. https://pubs.acs.org/doi/10.1021/am5007113

doi: 10.1021/am5007113     URL    
[103]
Qian Y, Zhang Q, Qiu X Q , Zhu S P. Green Chem., 2014,16(12):4963. 6674eb99-c7cb-4349-a0af-95c25e25520ehttp://dx.doi.org/10.1039/c4gc01242a

doi: 10.1039/c4gc01242a     URL    
[104]
Zhou J, Wang L J, Qiao X Y, Binks B P, Sun K .J Colloid Interface Sci., 2012,367(1):213. https://linkinghub.elsevier.com/retrieve/pii/S0021979711013725

doi: 10.1016/j.jcis.2011.11.001     URL    
[105]
Qiao X Y, Zhou J, Binks B P, Gong X L, Sun K . Colloids and Surfaces A: Physicochem. Eng Aspects, 2012,412(20):20.
[106]
Kraft D J, Luigjes B , Folter J W J D, Philipse A P, Kegel W K.. Phys. Chem. B, 2010,114(38):12257. https://pubs.acs.org/doi/10.1021/jp104662g

doi: 10.1021/jp104662g     URL    
[107]
Ingram D R, Kotsmar C, Yoon K Y, Shao S, Huh C, Bryant S L, Milner T E, Johnston K P .J Colloid Interface Sci., 2010,351(1):225.
[108]
Lan Q, Liu C, Yang F, Liu S Y, Xu J, Sun D J .J Colloid Interface Sci., 2007,310(1):260. https://linkinghub.elsevier.com/retrieve/pii/S0021979707000653

doi: 10.1016/j.jcis.2007.01.081     URL    
[109]
Lin Z Y, Yu D H , Li Y M. Colloid Polym. Sci., 2015,293(1):125.
[110]
Al-Sahhaf T A, Fahim M A, Elsharkawy A M . J Dispersion Sci. Technol., 2009,30(5):597.
[111]
Low L E, Tey B T, Ong B H, Tang S Y . Polymer, 2018,141:93. https://linkinghub.elsevier.com/retrieve/pii/S003238611830199X

doi: 10.1016/j.polymer.2018.03.001     URL    
[112]
Nypelö T, Rodriguez-Abreu C, Kolen’ko Y V, Rivas J , Rojas O J. ACS Appl. Mater. Interfaces, 2014,6(19):16851.
[113]
Liang J L, Li H P, Yan J E, Hou W G . Energy Fuels, 2015,28(9):6172.
[114]
Low L E, Tey B T, Ong B H, Chan E S , Tang S Y. Carbohydr. Polym., 2017,155:391. https://linkinghub.elsevier.com/retrieve/pii/S0144861716310451

doi: 10.1016/j.carbpol.2016.08.091     URL    
[115]
Kim Y J, Liu Y D, Seo Y, Choi H J . Langmuir, 2013,29(16):4959. https://pubs.acs.org/doi/10.1021/la400523w

doi: 10.1021/la400523w     URL    
[116]
Han S, Choi J, Seo Y P, Park I J, Choi H J, Seo Y . Langmuir, 2018,34(8):2807.
[117]
Tsuji1 S, Kawaguchi1 H . Langmuir, 2008,24(7):3300. https://pubs.acs.org/doi/10.1021/la701780g

doi: 10.1021/la701780g     URL    
[118]
Kwok M H, Ngai T .J Taiwan Inst. Chem. Eng., 2018,92:97. https://linkinghub.elsevier.com/retrieve/pii/S1876107018300622

doi: 10.1016/j.jtice.2018.01.041     URL    
[119]
Monteux C, Marlière C, Paris P, Pantoustier N, Sanson N, Perrin P . Langmuir, 2010,26(17):13839. https://pubs.acs.org/doi/10.1021/la1019982

doi: 10.1021/la1019982     URL    
[120]
Saigal T, Dong H C, Matyjaszewski K, Tilton R D . Langmuir, 2010,26(19):15200.
[121]
Zhu Y, Fu T, Liu K H, Lin Q, Pei X M, Jiang J Z, Cui Z G, Binks B P . Langmuir, 2017,33(23):5724. https://pubs.acs.org/doi/10.1021/acs.langmuir.7b00273

doi: 10.1021/acs.langmuir.7b00273     URL    
[122]
Sun J, Wang W, He F, Chen Z H, Xie R, Ju X J, Liu Z , Chu L Y. RSC Adv., 2016,6(69):64182.
[123]
Pei X P, Zhai K K, Wang C, Deng Y K, Tan Y, Zhang B C, Bai Y G, Xu K, Wang P X . Langmuir, 2019,35(22):7222.
[124]
Cao Y Y, Wang Z, Zhang S M , Wang Y P. Mater. Chem. Front., 2017,1(10):2136.
[125]
Guo S Y, Jiang Y N, Wu F, Yu P, Liu H B, Li Y L , Mao L Q. ACS Appl. Mater. Interfaces, 2018,11(3):2684.
[126]
Li X H, Zheng W L, Pan H Y, Yu Y, Chen L, Wu P .J Catal., 2013,300(4):9.
[127]
Cole-Hamilton D J . Science, 2003,299(5613):1702.
[128]
Cole-Hamilton D J . Science, 2010,327(5961):41. https://www.sciencemag.org/lookup/doi/10.1126/science.1184556

doi: 10.1126/science.1184556     URL    
[129]
Crossley S, Faria J, Shen M, Resasco D E . Science, 2010,327(5961):68. https://www.sciencemag.org/lookup/doi/10.1126/science.1180769

doi: 10.1126/science.1180769     URL    
[130]
Zhang W J, Fu L M, Yang H Q . Chemsuschem, 2014,7(2):391. http://doi.wiley.com/10.1002/cssc.201301001

doi: 10.1002/cssc.201301001     URL    
[131]
Yang X, Wang Y L, Bai R X, Ma H L, Wang W H, Sun H J, Dong Y M, Qu F M, Tang Q M, Guo T, Binks B P, Meng T . Green Chem, 2019,21(9):2229.
[132]
Cho J, Cho J, Kim H, Lim M, Jo H, Kim H C, Min S J, Rhee H , Jim J W. Green Chem., 2018,20(12):2840.
[133]
Hao Y J, Liu Y F, Yang R, Zhang X M, Liu J , Yang H Q. Chin. Chem. Lett., 2018,29(6):778.
[134]
Zhou X, Chen C Y, Cao C Y, Song T, Yang H Q , Song W G. Chem. Sci., 2018,9(9):2575. http://xlink.rsc.org/?DOI=C7SC05164F

doi: 10.1039/C7SC05164F     URL    
[135]
Tang J, Zhou X, Cao S X, Zhu L Y, Xi L L , Wang J L. ACS Appl. Mater. Interfaces, 2019,11(17):16156.
[136]
Li N N . Ind. Eng. Chem. Process Des. Develop., 1971,10(2):215.
[137]
Lin Z Y, Zhang Z, Li Y M , Deng Y L. Chem. Eng. J., 2016,288:305.
[138]
Bai R X, Xue L H, Dou R K, Meng S X, Xie C Y, Zhang Q, Guo T, Meng T . Langmuir, 2016,32(36):9254.
[139]
Shi Y L, Xiong D Z, Li Z Y, Wang H Y, Pei Y C, Chen Y K , Wang J J. ACS Sustainable Chem. Eng., 2018,6(11):15383.
[140]
Hua Y, Zhang S M, Chen J D, Zhu Y . J. Mater. Chem. A, 2013,1(44):13970.
[141]
谢春燕(Xie C Y). 西南交通大学研究生论文(Postgraduate Dissertation of Southwest Jiaotong University), 2016.
[142]
Rodríguez-Arco L, Li M, Mann S. . Nat. Mater., 2017,16:857.
No related articles found!
阅读次数
全文


摘要

开关型Pickering乳液体系