English
新闻公告
More
化学进展 2021, Vol. 33 Issue (12): 2362-2377 DOI: 10.7536/PC201107 前一篇   后一篇

• 综述 •

透明超疏水材料的制备及其应用

李玥1,2, 卢亚妹2, 王鹏飞2, 曹莹泽2,*(), 戴春爱1,*()   

  1. 1 北京交通大学理学院化学系 北京 100044
    2 中国空间技术研究院钱学森空间技术实验室 北京 100094
  • 收稿日期:2020-11-05 修回日期:2021-03-12 出版日期:2021-12-20 发布日期:2021-07-29
  • 通讯作者: 曹莹泽, 戴春爱
  • 基金资助:
    国家自然科学基金项目(21905302)

Preparation and Application of Transparent Superhydrophobic Materials

Yue Li1,2, Yamei Lu2, Pengfei Wang2, Yingze Cao2(), Chun’ai Dai1()   

  1. 1 Department of Chemistry, School of Science, Beijing Jiaotong University,Beijing 100044, China
    2 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology,Beijing 100094, China
  • Received:2020-11-05 Revised:2021-03-12 Online:2021-12-20 Published:2021-07-29
  • Contact: Yingze Cao, Chun’ai Dai
  • Supported by:
    the National Natural Science Foundation of China(21905302)

超疏水材料由于其独特的非浸润性引起人们的广泛关注,近年来得到迅猛发展,各种适用于不同领域的功能性超疏水表面应运而生。其中,透明超疏水材料因其在光学领域的特殊贡献受到人们的青睐。透明疏水涂层技术对于实际应用具有重要的意义,透明涂层不仅可以满足光学器件防护的高透光率,还可以维持防护本体的基本外观,在自清洁、防污、防冰防雾、防腐蚀等领域都展示出广阔的应用前景。本文系统地阐述了超疏水表面以及其中功能性的透明超疏水表面的最新进展、表面的设计、制造和重要应用。尽管已经取得了重大进展,但是目前超疏水材料在耐久性方面还存在诸多问题,例如,容易被机械外力破坏、极端环境下表面的超疏水性质不稳定以及老化等问题,限制了透明疏水涂层技术的大范围应用。在未来的研究中,一方面继续丰富相关的理论知识,为透明疏水涂层技术的应用提供更多的理论支持,另一方面,提高涂层的透明度和机械耐久性能仍是未来研究的重中之重。

Superhydrophobic materials have attracted widespread attention due to their unique non-wetting properties, and have been rapidly developed in recent years. Multifunctional superhydrophobic surfaces suitable for different fields have emerged. Among them, transparent superhydrophobic materials are favored by people because of their special contributions in the optical field. The transparent hydrophobic coating technology is of great significance for practical applications. The transparent coating can not only meet the high light transmittance requirement of optical device protection, but also maintain the basic appearance of the protective body, and shows broad application prospects in the fields of self-cleaning, anti-fouling, anti-icing, anti-fog, anti-corrosion, etc. Here, we systematically elaborate the latest developments in the research progress of superhydrophobic surfaces and functional transparent superhydrophobic surfaces, surface design, manufacturing, and their applications. Although many significant progress has been made, the current durability of superhydrophobic materials still have many problems, such as easy to damage by mechanical external force, instability of superhydrophobic properties on the surface under extreme environments, and aging problems, which limits the wide range of applications of transparent hydrophobic coating technology. In future research, on one hand, relevant theoretical knowledge is to be further enriched to provide more theoretical support for the application of transparent hydrophobic coating technology. On the other hand, improving the transparency and mechanical durability of the coating is still the top priority of future research.

Contents

1 Introduction

2 Theoretical basis

2.1 Wettability related theories

2.2 The construction principle of transparent superhydrophobic surface

3 Preparation method of transparent superhydro-phobic surface

3.1 Chemical Vapour Deposition (CVD)

3.2 Dry etching technique

3.3 Colloidal lithography

3.4 Self-assembled film

3.5 Electrochemical method

3.6 Sol-gel method

3.7 Other methods

4 Application

4.1 Self-cleaning

4.2 Field of optics

4.3 Anti-fouling

4.4 Anti-icing and anti-fog

4.5 Anti-corrosion

5 Conclusion and outlook

()
图1 天然超疏水表面:(a)荷叶;(b)玫瑰花;(c)甲虫背部;(d)蝴蝶翅膀
Fig.1 Natural super-hydrophobic surface: (a) lotus leaf. (b) rose flower. (c) beetle back. (d) butterfly wings
图2 疏液领域主要发展的时间表
Fig.2 Timeline of major advances in the area of liquid repellency
图3 具有分层结构的天然超疏水表面的SEM图像:(a)荷叶表面分布无数个微米级乳突;(b)单个乳突放大图;(c)荷叶背面分布大量纳米棒;(d)荷叶表面疏水现象[12]
Fig.3 SEM image of a natural superhydrophobic surface with a layered structure: (a) Numerous micron-sized papillae are distributed on the surface of the lotus leaf. (b) an enlarged view of a single papilla. (c) a large number of nanorods are distributed on the back of the lotus leaf. (d) Water repulsion on the surface of the lotus leaf[12]. Copyright 2002, Wiley-VCH
图4 水滴与不同表面接触示意图:(a)光滑表面;(b)分级结构表面
Fig.4 Schematic diagram of water droplets contacting different surfaces: (a) Smooth surface. (b) Hierarchical structure surface
图5 SLIPS表面:(a)SLIPS表面浸润示意图;(b)制作SLIPS表面示意图[32]
Fig.5 SLIPS surface: (a) Schematic diagram of SLIPS surface wetting. (b) Schematic diagram of fabricating SLIPS surface[32]. Copyright 2016, American Chemical Society
图6 液滴以接触角θ落在表面上的模型[35]
Fig.6 The model of droplets falling on the surface at a contact angle θ[35]. Copyright 1952, American Chemical Society
图7 液滴在表面上的(a)Wenzel模型和(b)Cassie模型[38]
Fig.7 (a) Wenzel model and (b) Cassie-Baxter model of droplets on the surface[38]. Copyright 2016, American Chemical Society
表1 常见透明材料的折射率
Table 1 Refractive index of common transparent materials
图8 SiO2透明超疏水疏涂层:(a)样品沉积烟灰层照片;(b)和(c)分别为烟尘沉积的SEM图像和高分辨率SEM图像;(d)气相沉积二氧化硅壳后的SEM图像;(e)和(f)分别为在600 ℃下加热2 h除去碳核之后涂层的高分辨率SEM图像和高分辨率TEM图像;(g)涂层具有很高的透明度;(h)水滴和十六烷液滴静止在涂层表面的状态;(i)液滴在不复合涂层表面上接触示意图;(j)高速相机记录十六烷液滴在双疏表面上的弹跳过程[58]
Fig.8 SiO2 transparent super-hydrophobic coating: (a) the photo of the soot layer of the sample. (b) and (c) are the SEM image and high-resolution SEM image of the soot deposition, respectively. (d) the SEM image of the vapor-deposited silica shell. (e) and (f) are high-resolution SEM images and high-resolution TEM images of the coating after heating at 600 ℃ for 2 hours to remove the carbon core. (g) the coating has high transparency. (h) The state of water droplets and hexadecane droplets resting on the double phobic surface. (i) the schematic diagram of the droplets contacting on the surface of the non-composite coating. (j) the bouncing process of the hexadecane droplets on the double phobic surface recorded by the high-speed camera[58]. Copyright 2012, American Association for the Advancement of Science
图9 聚甲基丙烯酸甲酯透明超疏水表面:(a)制备示意图;(b)表面在可见光范围内透明度可达95%;(c)高速相机记录红色染料水滴在表面弹跳的过程[61]
Fig.9 Polymethyl methacrylate transparent super-hydrophobic surface: (a) Schematic diagram of preparation. (b) surface transparency can reach 95% in the visible light range. (c) the process of red dye droplets bouncing on the surface recorded by the high-speed camera[61]. Copyright 2013, Wiley-VCH
图10 PDMS薄膜:(a)激光显微镜下的微观形貌图;(b)、(c)扫描电镜下的微观形貌图;(d)、(e)将PDMS薄膜置于纸张上方不同位置;(f) PDMS薄膜具有很高的透明度[64]
Fig.10 PDMS film: (a) the micro-topography under the laser microscope. (b), (c) the micro-topography under the scanning electron microscope. (d), (e) the PDMS film is placed at different positions above the paper. (f) PDMS film has high transparency[64]. Copyright 2016, American Chemical Society
图11 具有双级粗糙结构的透明超疏水薄膜的制备示意图及表面微观结构[66]
Fig.11 Schematic diagram of preparation and surface microstructure of transparent superhydrophobic film with two-stage rough structure[66]. Copyright 2015, American Chemical Society
图12 多层自组装的类二氧化硅涂层:(a)涂层的制备过程示意图;(b)涂层的微观形貌,插图显示涂层的水接触角在155°左右;(c)涂层在可见光范围内的透明度可达92%[75]
Fig.12 Multilayer self-assembled silica-like coating: (a) Schematic diagram of the coating preparation process; (b) the micro morphology of the coating, the illustration shows that the water contact angle of the coating is about 155°; (c) the transparency of the coating in the visible light range can reach 92%[75]. Copyright 2020, Wiley-VCH
图13 ZNC涂层:(a)制备过程;(b)涂层具有优异的超疏水性能;(c)涂层具有良好的防腐蚀性能[79]
Fig.13 ZNC coating: (a) preparation process; (b) coating has excellent superhydrophobic properties; (c) coating has good corrosion resistance[79]. Copyright 2018, American Chemical Society
图14 透明疏水涂层:(a)制备机理图;(b)水滴在涂层表面的光学镜像,具有优异的超疏水性能;(c)涂层具有良好的透明度[84]
Fig.14 Transparent hydrophobic coating: (a) Preparation mechanism diagram. (b) Optical mirror image of water droplets on the surface of the coating, with excellent superhydrophobic properties. (c) The coating has good transparency[84]. Copyright 2010, American Chemical Society
表2 超疏水表面常见制备方法总结
Table 2 Summarize of common preparation methods for superhydrophobic surfaces
Method Process Advantages Disadvantages Substrates
Chemical Vapour Deposition The use of one or several gas-phase compounds or simple substances containing film elements to form a film by chemical reactions on the surface of the substrate Save time, low cost, easy operation, good repeatability. Air pollution, difficult to control, poor bonding strength and wear resistance. glass
polymer
metal
wood
Silicon wafer
Dry etching technique Physically ablate the surface to change the rough structure of the surface. Easy to control and manipulate, good repeatability, no chemical waste liquid, high cleanliness, good stability and uniform surface. The cost is high, the equipment is complex, and the processing time is long, making it difficult to widely use. glass
metal
Silicon wafer
Colloidal lithography Copy the rough microstructure on the surface of the low surface energy template. Save time, low cost, good repeatability, wide application range, and mass production. The template size is limited and the wear resistance is poor, glass
polymer
metal
Silicon wafer
Self-assembled film Basic structural units (molecules, nanomaterials, micron or larger substances) spontaneously form ordered structures Simple and easy to implement, no special device is needed, water is usually used as solvent, deposition process and membrane structure are easy to control Poor wear resistance glass
polymer
metal
Silicon wafer
Electrochemical method In an external electric field, the redox reaction occurs in the plating layer and is formed on the electrode. Save time, low cost, mass production Single substrate, poor wear resistance Conductor (metal)
Sol-gel method Prepare stable sol system and apply to substrate Simple operation, uniform coating Long reaction period, poor abrasion
resistance, use organic solvents
glass
polymer
metal
Silicon wafer
图15 表面粗糙度与自清洁之间的关系示意图:(a)在光滑表面上,污染物颗粒与水重新分布;(b)在粗糙表面上,水滴携带污染物从表面上滑走[88]
Fig.15 Schematic diagram of the relationship between surface roughness and self-cleaning: (a) On a smooth surface, pollutant particles are redistributed with water; (b) On a rough surface, water droplets carry pollutants off the surface[88]. Copyright 2017, RSC
图16 透明超疏水涂层在太阳能电池板的应用:(a)应用后太阳能电池的外量子效率(EQE)图和对应的短路电流密度(JSC);(b) 涂层具有良好的透明度[92]
Fig.16 Application of transparent super-hydrophobic coating in solar panels: (a) The external quantum efficiency (EQE) diagram of the solar cell after application and the corresponding short-circuit current density (JSC). (b) The coating has good transparency[92]. Copyright 2016, Wiley-VCH
图17 防冰和疏冰机制过程:包括自推进,弹跳,润湿,成核和桥接[108]
Fig.17 The process of anti-icing and ice-phobic mechanisms, including self-propelling, bouncing, wetting, nucleating, and bridging[108]. Copyright 2017, Wiley-VCH
图18 超疏水表面用于防腐蚀:(a)分别在潮湿环境中和在NaCl溶液中的防腐蚀原理示意图;(b)涂层具有良好的防腐蚀性能[79]
Fig.18 Super-hydrophobic surface is used for anti-corrosion: (a) schematic diagram of anti-corrosion principle in humid environment and in NaCl solution; (b) coating has good anti-corrosion performance[79]. Copyright 2018, American Chemical Society
[1]
Nishino T, Meguro M, Nakamae K, Matsushita M, Ueda Y. Langmuir, 1999, 15(13): 4321.

doi: 10.1021/la981727s     URL    
[2]
Yan Y Y, Gao N, Barthlott W. Adv. Colloid Interface Sci., 2011, 169(2): 80.

doi: 10.1016/j.cis.2011.08.005     URL    
[3]
Roach P, Shirtcliffe N J, Newton M I. Soft Matter, 2008, 4(2): 224.

doi: 10.1039/b712575p     pmid: 32907233
[4]
Li X M, Reinhoudt D, Crego-Calama M. Chem. Soc. Rev., 2007, 36(8): 1350.

doi: 10.1039/b602486f     URL    
[5]
Gao X F, Jiang L. Physics, 2006, 35(7): 559.(高雪峰, 江雷. 物理, 2006, 35(7): 559.)
[6]
Ward W E. J. Aesthet. Art Crit., 1952, 11(2): 135.
[7]
Young T. Phil. Trans. R. Soc., 1805, 95: 65.

doi: 10.1098/rstl.1805.0005     URL    
[8]
Wenzel R N. Ind. Eng. Chem., 1936, 28(8): 988.

doi: 10.1021/ie50320a024     URL    
[9]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.

doi: 10.1039/tf9444000546     URL    
[10]
Onda T, Shibuichi S, Satoh N, Tsujii K. Langmuir, 1996, 12(9): 2125.

doi: 10.1021/la950418o     URL    
[11]
Barthlott W, Neinhuis C. Planta, 1997, 202(1): 1.

doi: 10.1007/s004250050096     URL    
[12]
Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Adv. Mater., 2002, 14(24): 1857.

doi: 10.1002/adma.200290020     URL    
[13]
Tsujii K, Yamamoto T, Onda T, Shibuichi S. Angew. Chem. Int. Ed. Engl., 1997, 36(9): 1011.

doi: 10.1002/(ISSN)1521-3773     URL    
[14]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365): 443.

doi: 10.1038/nature10447     URL    
[15]
Lafuma A, QuÉrÉ D. EPL Europhys. Lett., 2011, 96(5): 56001.

doi: 10.1209/0295-5075/96/56001     URL    
[16]
Liu T, Kim C J. Science, 2014, 346(6213): 1096.

doi: 10.1126/science.1254787     URL    
[17]
Guo Z G, Liu W M, Su B L. Appl. Phys. Lett., 2008, 92(6): 063104.

doi: 10.1063/1.2841666     URL    
[18]
Guo Y G, Zhu Y C, Zhang X, Luo B P. Progress in Chemistry, 2020, 32(2/3): 320.
( 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 化学进展, 2020, 32(2/3): 320).

doi: 10.7536/PC190629    
[19]
Wei C Q, Jin B Y, Zhang Q H, Zhan X L, Chen F Q. J. Alloys Compd., 2018, 765: 721.

doi: 10.1016/j.jallcom.2018.06.041     URL    
[20]
Wang F, Ding W W, He J Y, Zhang Z L. Chem. Eng. J., 2019, 360: 243.

doi: 10.1016/j.cej.2018.11.224     URL    
[21]
Bohn H F, Federle W. PNAS, 2004, 101(39): 14138.

doi: 10.1073/pnas.0405885101     URL    
[22]
Wilson P W, Lu W Z, Xu H J, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Phys. Chem. Chem. Phys., 2013, 15(2): 581.

doi: 10.1039/C2CP43586A     URL    
[23]
Long Y F, Yin X X, Mu P, Wang Q T, Hu J J, Li J. Chem. Eng. J., 2020, 401: 126137.

doi: 10.1016/j.cej.2020.126137     URL    
[24]
Li Q, Guo Z G. J. Mater. Chem. A, 2018, 6(28): 13549.

doi: 10.1039/C8TA03259A     URL    
[25]
Li J L.Degree Dissertation of Anhui University, 2011.(李佳霖. 安徽大学学位论文, 2011.).
[26]
Wang P, Chen M J, Han H L, Fan X L, Liu Q, Wang J F. J. Mater. Chem. A, 2016, 4(20): 7869.

doi: 10.1039/C6TA01082B     URL    
[27]
Huang E M, Pi P H, Zheng D F, Wen X F, Yang Z R. New Chem. Mater., 2010, 38(3): 1.
( 黄二梅, 皮丕辉, 郑大锋, 文秀芳, 杨卓如. 化工新型材料, 2010, 38(3): 1.)
[28]
Ozbay S, Yuceel C, Erbil H Y. ACS Appl. Mater. Interfaces, 2015, 7(39): 22067.

doi: 10.1021/acsami.5b07265     URL    
[29]
Coady M J, Wood M, Wallace G Q, Nielsen K E, Kietzig A M, LagugnÉ-Labarthet F, Ragogna P J. ACS Appl. Mater. Interfaces, 2018, 10(3): 2890.

doi: 10.1021/acsami.7b14433     URL    
[30]
Kreder M J, Alvarenga J, Kim P, Aizenberg J. Nat. Rev. Mater., 2016, 1(1): 1.
[31]
Lv J, Song Y L, Jiang L, Wang J J. ACS Nano, 2014, 8(4): 3152.

doi: 10.1021/nn406522n     URL    
[32]
Yeong Y H, Wang C Y, Wynne K J, Gupta M C. ACS Appl. Mater. Interfaces, 2016, 8(46): 32050.

doi: 10.1021/acsami.6b11184     URL    
[33]
Yuan Y H, Lee T R. Surf. Sci. Tech., 2013, 51: 3.
[34]
Wenzel R N. J. Phys. Chem., 1949, 53(9): 1466.
[35]
Good R J. J. Am. Chem. Soc., 1952, 74(20): 5041.

doi: 10.1021/ja01140a014     URL    
[36]
Seveno D, Blake T D, de Coninck J. Phys. Rev. Lett., 2013, 111(9): 096101.

doi: 10.1103/PhysRevLett.111.096101     URL    
[37]
Wang X S, Cui S W, Zhou L, Xu S H, Sun Z W, Zhu R Z. J. Adhesion Sci. Technol., 2014, 28(2): 161.

doi: 10.1080/01694243.2013.833401     URL    
[38]
Su B, Tian Y, Jiang L. J. Am. Chem. Soc., 2016, 138(6): 1727.

doi: 10.1021/jacs.5b12728     URL    
[39]
Guo P, Zheng Y M, Wen M X, Song C, Lin Y C, Jiang L. Adv. Mater., 2012, 24(19): 2642.

doi: 10.1002/adma.v24.19     URL    
[40]
Lai Y K, Chen Z, Lin C J. Sci. China Chem., 2011, 41(4): 609.
( 赖跃坤, 陈忠, 林昌健. 中国科学:化学, 2011, 41(4): 609.)
[41]
Wang S, Jiang L. Adv. Mater., 2007, 19(21): 3423.

doi: 10.1002/(ISSN)1521-4095     URL    
[42]
Lai Y K, Tang Y X, Gong J J, Gong D G, Chi L F, Lin C J, Chen Z. J. Mater. Chem., 2012, 22(15): 7420.

doi: 10.1039/c2jm16298a     URL    
[43]
Urandelger T, Adem Y, Fahri E O, Mehmet B. ACS Appl. Mater. Interf., 2014, 6: 9680.

doi: 10.1021/am502117a     URL    
[44]
Peters A M, Pirat C, Sbragaglia M, Borkent B M, Wessling M, Lohse D, Lammertink R G H. Eur. Phys. J. E, 2009, 29(4): 391.

doi: 10.1140/epje/i2009-10489-3     URL    
[45]
Ma Y, Ma Y M, Cao C Y, Zou H, Jiang L. Plastics, 2006, 35(5): 39.
( 马英, 马永梅, 曹新宇, 邹洪, 江雷. 塑料, 2006, 35(5): 39.)
[46]
Lin Y, Han J P, Cai M Y, Liu W J, Luo X, Zhang H J, Zhong M L. J. Mater. Chem. A, 2018, 6(19): 9049.

doi: 10.1039/C8TA01965G     URL    
[47]
Yu S, Guo Z G, Liu W M. Chem. Commun., 2015, 51(10): 1775.

doi: 10.1039/C4CC06868H     URL    
[48]
Chen L, Wang Y F, Nie R C, Xu C Y, Zhou H H. Guangzhou Chem. Ind., 2014, 42(17): 24.
( 陈理, 王艳芬, 聂荣春, 徐初阳, 周欢欢. 广州化工, 2014, 42(17): 24.)
[49]
Rahmawan Y, Xu L B, Yang S. J. Mater. Chem. A, 2013, 1(9): 2955.

doi: 10.1039/C2TA00288D     URL    
[50]
Bohren C, Hufman D R. Absorption and Scattering of Light by Small Particles. John Wiley, New York, 1983. Chapter 2. 7.
[51]
Perl E E, McMahon W E, Farrell R M, DenBaars S P, Speck J S, Bowers J E. Nano Lett., 2014, 14(10): 5960.

doi: 10.1021/nl502977f     URL    
[52]
Karunakaran R G, Lu C H, Zhang Z H, Yang S. Langmuir, 2011, 27(8): 4594.

doi: 10.1021/la104067c     pmid: 21355577
[53]
Kerker M. The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York, 1969. Chapter 3.
[54]
Walheim S, Schaffer E, Mlynek J, Steiner U. Science, 1999, 283.
[55]
Garahan A, Pilon L, Yin J, Saxena I. J. Appl. Phys., 2007, 101(1): 014320.

doi: 10.1063/1.2402327     URL    
[56]
Yan X B, Tay B K, Yang Y, Po W Y K. J. Phys. Chem. C, 2007, 111(46): 17254.

doi: 10.1021/jp076064e     URL    
[57]
Cao L L, Hu H H, Gao D. Langmuir, 2007, 23(8): 4310.

doi: 10.1021/la063572r     URL    
[58]
Deng X, Mammen L, Butt H J, Vollmer D. Science, 2012, 335(6064): 67.

doi: 10.1126/science.1207115     pmid: 22144464
[59]
Laturkar S V, Mahanwar P A. Nanosystems: Phys. Chem. Math., 2016: 650.
[60]
Cho S C, Hong Y C, Uhm H S. J. Mater. Chem., 2007, 17(3): 232.

doi: 10.1039/B611368K     URL    
[61]
Her E K, Ko T J, Shin B, Roh H, Dai W, Seong W K, Kim H Y, Lee K R, Oh K H, Moon M W. Plasma Processes Polym., 2013, 10(5): 401.

doi: 10.1002/ppap.201370013     URL    
[62]
Ghosh P, Satou S, Nakamori H, Noda T, Daisuke I, Tanemura M. Phys. Status Solidi RRL, 2012, 6(11): 430.

doi: 10.1002/pssr.v6.11     URL    
[63]
Durret J, Szkutnik P D, Frolet N, Labau S, Gourgon C. Appl. Surf. Sci., 2018, 445: 97.

doi: 10.1016/j.apsusc.2018.03.010     URL    
[64]
Gong D W, Long J Y, Jiang D F, Fan P X, Zhang H J, Li L, Zhong M L. ACS Appl. Mater. Interfaces, 2016, 8(27): 17511.

doi: 10.1021/acsami.6b03424     URL    
[65]
Kong J H, Kim T H, Kim J H, Park J K, Lee D W, Kim S H, Kim J M. Nanoscale, 2014, 6(3): 1453.

doi: 10.1039/C3NR04629J     URL    
[66]
Kim T H, Ha S H, Jang N S, Kim J, Kim J H, Park J K, Lee D W, Lee J, Kim S H, Kim J M. ACS Appl. Mater. Interfaces, 2015, 7(9): 5289.

doi: 10.1021/am5086066     URL    
[67]
Zhu Y, Hu D, Wan M X, Jiang L, Wei Y. Adv. Mater., 2007, 19(16): 2092.

doi: 10.1002/(ISSN)1521-4095     URL    
[68]
Zhu X T, Zhang Z Z, Yang J, Xu X H, Men X H, Zhou X Y. J. Colloid Interface Sci., 2012, 380(1): 182.

doi: 10.1016/j.jcis.2012.04.063     URL    
[69]
Tsai H J, Lee Y L. Langmuir, 2007, 23(25): 12687.

doi: 10.1021/la702521u     URL    
[70]
Li Y, Lee E J, Cho S O. J. Phys. Chem. C, 2007, 111(40): 14813.

doi: 10.1021/jp073672l     URL    
[71]
Samanta B, Ofir Y, Patra D, Rotello V M. Soft Matter, 2009, 5(6): 1247.

doi: 10.1039/B808494G     URL    
[72]
Zhang L B, Chen H, Sun J Q, Shen J C. Chem. Mater., 2007, 19(4): 948.
[73]
Bravo J, Zhai L, Wu Z Z, Cohen R E, Rubner M F. Langmuir, 2007, 23(13): 7293.

doi: 10.1021/la070159q     URL    
[74]
Xu L B, Karunakaran R G, Guo J, Yang S. ACS Appl. Mater. Interfaces, 2012, 4(2): 1118.

doi: 10.1021/am201750h     URL    
[75]
Cheng L C, Simonaitis J W, Gadelrab K R, Tahir M, Ding Y, Alexander-Katz A, Ross C A. Small, 2020, 16(1): 1905509.

doi: 10.1002/smll.v16.1     URL    
[76]
Larmour I, Bell S, Saunders G. Angew. Chem. Int. Ed., 2007, 46(10): 1710.

doi: 10.1002/(ISSN)1521-3773     URL    
[77]
Wang S T, Song Y L, Jiang L. Nanotechnology, 2007, 18(1): 015103.

doi: 10.1088/0957-4484/18/1/015103     URL    
[78]
Li Y, Jia W Z, Song Y Y, Xia X H. Chem. Mater., 2007, 19(23): 5758.

doi: 10.1021/cm071738j     URL    
[79]
Xiang T F, Han Y, Guo Z Q, Wang R, Zheng S L, Li S, Li C, Dai X M. ACS Sustainable Chem. Eng., 2018, 6(4): 5598.

doi: 10.1021/acssuschemeng.8b00639     URL    
[80]
Huang Z B, Zhu Y, Zhang J H, Yin G F. J. Phys. Chem. C, 2007, 111(18): 6821.

doi: 10.1021/jp0678554     URL    
[81]
García N, Benito E, Guzmán J, Tiemblo P. J. Am. Chem. Soc., 2007, 129(16): 5052.

pmid: 17397151
[82]
Zhu X T, Zhang Z Z, Ren G N, Men X H, Ge B, Zhou X Y. J. Colloid Interface Sci., 2014, 421: 141.

doi: 10.1016/j.jcis.2014.01.026     URL    
[83]
Wu X H, Chen Z. J. Mater. Chem. A, 2018, 6(33): 16043.

doi: 10.1039/C8TA05692G     URL    
[84]
Xu Q F, Wang J N, Sanderson K D. ACS Nano, 2010, 4(4): 2201.

doi: 10.1021/nn901581j     URL    
[85]
Wang D, Zhang Z B, Li Y M, Xu C H. ACS Appl. Mater. Interfaces, 2014, 6(13): 10014.

doi: 10.1021/am405884x     URL    
[86]
Ebert D, Bhushan B. Langmuir, 2012, 28(31): 11391.

doi: 10.1021/la301479c     URL    
[87]
Yoon H, Kim H, Latthe S S, Kim M W, Al-Deyab S, Yoon S S. J. Mater. Chem. A, 2015, 3(21): 11403.

doi: 10.1039/C5TA02226F     URL    
[88]
Yong J L, Chen F, Yang Q, Huo J L, Hou X. Chem. Soc. Rev., 2017, 46(14): 4168.

doi: 10.1039/C6CS00751A     URL    
[89]
Li F, Du M, Zheng Z, Song Y H, Zheng Q. Adv. Mater. Interfaces, 2015, 2(13): 1500201.

doi: 10.1002/admi.v2.13     URL    
[90]
Jang G G, Smith D B, List F A, Lee D F, Ievlev A V, Collins L, Park J, Polizos G. Nanoscale, 2018, 10(30): 14600.

doi: 10.1039/C8NR03024C     URL    
[91]
Zhi J H, Zhang L Z. Appl. Surf. Sci., 2018, 454: 239.

doi: 10.1016/j.apsusc.2018.05.139     URL    
[92]
Vüllers F, Gomard G, Preinfalk J B, Klampaftis E, Worgull M, Richards B, Hölscher H, Kavalenka M N. Small, 2016, 12(44): 6144.

doi: 10.1002/smll.201601443     pmid: 27717174
[93]
Chavan S, Park D, Singla N, Sokalski P, Boyina K, Miljkovic N. Langmuir, 2018, 34(22): 6636.

doi: 10.1021/acs.langmuir.8b00916     URL    
[94]
Li N, Wu L, Yu C L, Dai H Y, Wang T, Dong Z C, Jiang L. Adv. Mater., 2018, 30(8): 1703838.

doi: 10.1002/adma.v30.8     URL    
[95]
Shen Y Z, Tao J, Wang G Y, Zhu C L, Chen H F, Jin M M, Xie Y H. J. Phys. Chem. C, 2018, 122(13): 7312.

doi: 10.1021/acs.jpcc.8b01538     URL    
[96]
Shen Y Z, Liu S Y, Zhu C L, Tao J, Wang G Y. Chem. Eng., 2017, 313: 47.

doi: 10.1016/j.cej.2016.12.063     URL    
[97]
Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4(12): 7699.

doi: 10.1021/nn102557p     pmid: 21062048
[98]
Farokhirad S, Lee T. Int. J. Multiph. Flow, 2017, 95: 220.

doi: 10.1016/j.ijmultiphaseflow.2017.05.008     URL    
[99]
Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D. Langmuir, 2011, 27(6): 3059.

doi: 10.1021/la104762g     URL    
[100]
Emelyanenko A M, Boinovich L B, Bezdomnikov A A, Chulkova E V, Emelyanenko K A. ACS Appl. Mater. Interfaces, 2017, 9(28): 24210.

doi: 10.1021/acsami.7b05549     URL    
[101]
Jin M M, Shen Y Z, Luo X Y, Tao J, Xie Y H, Chen H F, Wu Y. Appl. Surf. Sci., 2018, 455: 883.

doi: 10.1016/j.apsusc.2018.06.043     URL    
[102]
Xi N Y, Liu Y, Zhang X N, Liu N, Fu H, Hang Z Q, Yang G Y, Chen H, Gao W. Appl. Surf. Sci., 2018, 444: 757.

doi: 10.1016/j.apsusc.2018.03.075     URL    
[103]
Wang N, Tang L L, Tong W, Xiong D S. Mater. Des., 2018, 156: 320.

doi: 10.1016/j.matdes.2018.06.053     URL    
[104]
Wu X H, Zhao X, Ho J W C, Chen Z. Chem. Eng. J., 2019, 355: 901.

doi: 10.1016/j.cej.2018.07.204     URL    
[105]
Song J L, Li Y X, Xu W, Liu H, Lu Y. J. Colloid Interface Sci., 2019, 541: 86.

doi: 10.1016/j.jcis.2019.01.014     URL    
[106]
Zheng S L, Bellido-Aguilar D A, Wu X H, Zhan X J, Huang Y J, Zeng X T, Zhang Q C, Chen Z. ACS Sustainable Chem. Eng., 2019, 7(1): 641.

doi: 10.1021/acssuschemeng.8b04203     URL    
[107]
Shen Y Z, Wu Y, Tao J, Zhu C L, Chen H F, Wu Z W, Xie Y H. ACS Appl. Mater. Interfaces, 2019, 11(3): 3590.

doi: 10.1021/acsami.8b19225     URL    
[108]
Zhang S N, Huang J Y, Cheng Y, Yang H, Chen Z, Lai Y K. Small, 2017, 13(48): 1701867.

doi: 10.1002/smll.v13.48     URL    
[109]
Vazirinasab E, Jafari R, Momen G. Surf. Coat. Technol., 2018, 341: 40.

doi: 10.1016/j.surfcoat.2017.11.053     URL    
[110]
Ding C D, Tai Y, Wang D, Tan L H, Fu J J. Chem. Eng. J., 2019, 357: 518.

doi: 10.1016/j.cej.2018.09.133     URL    
[111]
Wang Z W, Li Q, She Z X, Chen F N, Li L Q, Zhang X X, Zhang P. Appl. Surf. Sci., 2013, 271: 182.

doi: 10.1016/j.apsusc.2013.01.158     URL    
[112]
Xue C H, Zhang Z D, Zhang J, Jia S T. J. Mater. Chem. A, 2014, 2(36): 15001.

doi: 10.1039/C4TA02396J     URL    
[113]
Peng C Y, Chen Z Y, Tiwari M K. Nat. Mater., 2018, 17(4): 355.

doi: 10.1038/s41563-018-0044-2     URL    
[114]
Wang D H, Sun Q Q, Hokkanen M J, Zhang C L, Lin F Y, Liu Q, Zhu S P, Zhou T F, Chang Q, He B, Zhou Q, Chen L Q, Wang Z K, Ras R H A, Deng X. Nature, 2020, 582(7810): 55.

doi: 10.1038/s41586-020-2331-8     URL    
[115]
Long Y F, Yin X X, Mu P, Wang Q T, Hu J J, Li J. Chem. Eng. J., 2020, 401: 126137.

doi: 10.1016/j.cej.2020.126137     URL    
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[3] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[4] 孙赛, 庄小东, 汪露馨, 汪诚, 张斌, 陈彧. 基于石墨烯及其衍生物的信息存储:材料、器件和性能[J]. 化学进展, 2016, 28(1): 18-39.
[5] 赵巧玲, 马志*. 原子力显微镜在聚烯烃研究中的应用[J]. 化学进展, 2012, (10): 2011-2018.
[6] 唐晶晶, 第凤, 徐潇, 肖迎红, 车剑飞. 石墨烯透明导电薄膜[J]. 化学进展, 2012, 24(04): 501-511.
[7] 王金梅,李达,邓赞红,朱雪斌,董伟伟,方晓东. 溶胶凝胶法制备铜铁矿结构p型透明导电氧化物薄膜*[J]. 化学进展, 2009, 21(01): 128-133.
[8] 蒋雄,乔生儒,张程煜,胡海豹,刘晓菊. 疏水表面及其减阻研究*[J]. 化学进展, 2008, 20(04): 450-456.
[9] 张伟 闫翠娥 . 透明质酸及其衍生物作药物载体[J]. 化学进展, 2006, 18(12): 1684-1690.
[10] 郭兴林,谢琼丹,赵宁,梁松苗,王笃金,徐坚. 仿生高分子的研究进展*[J]. 化学进展, 2004, 16(06): 1023-.
阅读次数
全文


摘要

透明超疏水材料的制备及其应用