English
新闻公告
More
化学进展 2018, Vol. 30 Issue (1): 112-123 DOI: 10.7536/PC171008 前一篇   后一篇

• 综述 •

聚苯并嗪功能表面的构筑、性能与应用

周长路, 辛忠*   

  1. 华东理工大学化工学院 上海市多相结构材料化学工程重点实验室 上海 200237
  • 收稿日期:2017-10-12 修回日期:2017-12-03 出版日期:2018-01-15 发布日期:2017-12-13
  • 通讯作者: 辛忠,e-mail:xzh@ecust.edu.cn E-mail:xzh@ecust.edu.cn
  • 基金资助:
    国家自然科学基金(No.21776091,21506062)和上海市领军人才计划(2013)

Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine

Changlu Zhou, Zhong Xin*   

  1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2017-10-12 Revised:2017-12-03 Online:2018-01-15 Published:2017-12-13
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21776091, 21506062) and the Program of Leading Talents (2013).
聚苯并嗪是一种具有优秀性能的热固性树脂,因其不含氟且具有比特氟龙更低的本征表面自由能而被大量用于制备各种功能表面并在许多应用领域受到广泛关注,如防腐蚀、防结冰、抗粘、液体操控、油水分离以及自清洁等。事实证明基于聚苯并嗪复合材料的性质决定于其化学结构和组成,深入探讨聚苯并嗪复合材料的结构与表面性质之间的构效关系对于先进表面材料的发展至关重要。本文综述了基于聚苯并嗪及其复合材料功能表面的构建与性质,着重介绍了具有可控结构、润湿性、黏附性以及其他功能的表面分子设计与构建原则,并对相关研究现状及挑战进行了简短的评述,以期为特定性能的聚苯并嗪基材料的设计和开发提供技术指导。
Polybenzoxazines are well known to be advanced thermoset resin with many unique properties. More specially, the last decade has witnessed active research on various polybenzoxazines based functional surfaces due to their ability of low surface free energy, which can be lower than the widely regarded low surface energy polymer, Teflon, without having fluorine atoms. Nowadays, researches on polybenzoxazine-based functional surfaces have aroused attention in many fields of applications, such as anticorrosion, anti-ice, anti-sticking, liquid manipulation, oil/water separation, and self-cleaning. It is evident that the performance of polybenzoxazine based composites is determined by the chemical structures and constitution. The relationship between structures and surface properties in composites based on polybenzoxazines plays a vital role in the development of advanced surface materials. Herein, the advances in fabricating and investigating performance of functional surfaces based on polybenzoxazines and their composites is reviewed, focusing on the molecule design and fabricating principals of the surfaces with controllable structure, wettability, adhesion, and other fascinating functionality. Current progress from the research database are also summarized along with challenges in the development of polybenzoxazine based functional surface, in order to provide guidelines for designing and developing of materials based on polybenzoxazines with desired properties.
Contents
1 Introduction
2 Fabrication and properties of functional surface based on polybenzoxazine
2.1 Polybenzoxazines chemical structure and surface properties
2.2 Composites' chemical constitution and surface properties
3 Applications of functional surface based on polybenzoxazine
3.1 Anti-corrosion
3.2 Anti-ice
3.3 Anti-sticking
3.4 Liquid manipulation
3.5 Water/oil separation
3.6 Self-cleaning
4 Conclusion

中图分类号: 

()
[1] Ishida H, Agag T. Handbook of Benzoxazine Resins. Amsterdam:Elsevier, 2011. 1.
[2] Kiskan B, Ghosh N N, Yagci Y. Polym. Int., 2011, 60(2):167.
[3] Ishida H, Froimowicz P. Advanced and Emerging Polybenzoxazine Science and Technology. Amsterdam:Elsevier, 2017. 1.
[4] Wang C F, Su Y C, Kuo S W, Huang C F, Sheen Y C, Chang F C. Angew. Chem.Int. Ed., 2006, 45(14):2248.
[5] 董会杰(Dong H J). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2010.
[6] 曲丽(Qu L). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2011.
[7] Wang S, Liu K, Yao X, Jiang L. Chem. Rev., 2015, 115(16):8230.
[8] Kuo S W, Wu Y C, Wang C F, Jeong K U. J.Phys. Chem. C, 2009, 113(48):20666.
[9] Chen K C, Li H T, Chen W B, Liao C H, Sun K W, Chang F C. Polym. Int., 2011, 60(3):436.
[10] Chen K C, Li H T, Huang S C, Chen W B, Sun K W, Chang F C. Polym. Int., 2011, 60(7):1089.
[11] Dong H, Xin Z, Lu X, Lv Y H. Polymer, 2011, 52(4):1092.
[12] Liu J, Lu X, Xin Z, Zhou C L. Chinese J. Polym. Sci., 2016, 34(8):919.
[13] 刘娟(Liu J). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2015.
[14] 曲丽(Qu L). 华东理工大学学报:自然科学版(Journal of East China University of Science and Technology:Natural Science Edition), 2011, 37(6):659.
[15] 曲丽(Qu L), 周长路(Zhou C L), 辛忠(Xin Z), 刘娟(Liu J). 化工学报(Journal of Chemical Industry and Engineering), 2012, 63(6):1934.
[16] Ishida H, Low H Y. Macromolecules, 1997, 30(4):1099.
[17] Qu L, Xin Z. Langmuir, 2011, 27(13):8365.
[18] Liu J, Lu X, Xin Z, Zhou C L. Langmuir, 2013, 29(1):411.
[19] Rimdusit S, Kunopast P, Dueramae I. Polym. Eng. Sci., 2011, 51(9):1797.
[20] Grishchuk S, Schmitt S, Vorster O, Karger-Kocsis J. J. Appl. Polym. Sci., 2012, 124(4):2824.
[21] Zhou C L, Lin J, Lu X, Xin Z. RSC Adv., 2016, 6(34):28428.
[22] Zhou C L, Lu X, Xin Z, Zhang Y F. Prog. Org. Coat., 2013, 76(9):1178.
[23] Patil D M, Phalak G A, Mhaske S T. Prog. Org. Coat., 2017, 105:18.
[24] Liao C S, Wu J S, Wang C F, Chang F C. Macromol. Rapid. Commun., 2008, 29(1):52.
[25] Lin S C, Wu C S, Yeh J M, Liu Y L. Polym. Chem., 2014, 5(14):4235.
[26] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Adv. Mater., 2002, 14(24):1857.
[27] Gao L, Mccarthy T J. Langmuir, 2006, 22(7):2966.
[28] Zhang W F, Lu X, Xin Z, Zhou C L, Liu J. RSC Adv., 2015, 5(68):55513.
[29] Wang C F, Wang Y T, Tung P H, Kuo S W, Lin C H, Sheen Y C, Chang F C. Langmuir, 2006, 22(20):8289.
[30] Zhang W F, Lu X, Xin Z, Zhou C L. RSC Adv., 2016, 6(108):106054.
[31] Zhang W, Lu X, Xin Z, Zhou C L. Nanoscale, 2015, 7(46):19476.
[32] Tang X, Si Y, Ge J, Ding B, Liu L F, Zheng G, Luo W J, Yu J Y. Nanoscale, 2013, 5(23):11657.
[33] Yang L, Raza A, Si Y, Mao X, Shang Y W, Ding B, Yu J Y, Al-Deyab S S. Nanoscale, 2012, 4(20):6581.
[34] Liu J, Lu X, Xin Z, Zhou C L. Appl. Surf. Sci., 2015, 353:1137.
[35] Zhou C L, Lu X, Xin Z, Zhang Y F. Corros. Sci., 2014, 80:269.
[36] Raza A, Si Y, Ding B, Yu J Y, Sun G. J. Colloid Interface Sci., 2013, 395:256.
[37] Caldona E B, De Leon A C C, Thomas P G, Naylor D F, Pajarito B B, Advincula R C. Ind.Eng. Chem. Res., 2017, 56(6):1485.
[38] Wang C F, Chiou S F, Ko F H, Chen J K, Chou C T, Huang C F, Kuo S W, Chang F C. Langmuir, 2007, 23(11):5868.
[39] Zhou C L, Lu X, Xin Z, Zhang Y F. Corros. Sci., 2013, 70:145.
[40] Riaz U, Nwaoha C, Ashraf S M. Prog. Org. Coat., 2014, 77(4):743.
[41] Schmitt G, Schutze M, Hays G F, Burns W, Han E H, Pourbaix A, Jacobson G. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control. (2009-05). http://corrosion.org/Publications.html
[42] Wei H, Wang Y, Guo J, Shen N Z, Jiang D, Zhang X, Yan X R, Zhu J H, Wang Q, Shao L, Lin H F, Wei S Y, Guo Z H. J. Mater. Chem. A, 2015, 3(2):469.
[43] Fernández-Seara J, Diz R, Uhía FJ.Appl. Thermal Eng., 2013, 51:502.
[44] Krishnadevi K, Selvaraj V. Appl. Surf. Sci., 2016, 366:148.
[45] Li W, Tian H, Hou B. Mater. Corros., 2012, 63(1):44.
[46] Weng C J, Chang C H, Peng C W, Chen S W, Yeh J M, Hsu C L, Wei Y. Chem. Mater., 2011, 23(8):2075.
[47] 周长路(Zhou C L). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2014.
[48] Bǎlǎnucǎ B, Raicopol M, Maljusch A, Garea S, Hanganu A, Schuhmann W, Andronescu C. ChemPlusChem, 2015, 80(7):1170.
[49] Escobar J, Poorteman M, Dumas L, Bonnaud L, Dubois P, Olivier M G. Prog. Org.Coat., 2015, 79:53.
[50] Poorteman M, Renaud A, Escobar J, Dumas L, Bonnaud L, Dubois P, Olivier M G. Prog. Org. Coat., 2016, 97:99.
[51] Raicopol M, Bǎlǎnucǎ B, Sliozberg K, Schluter B, Garea S A, Chira N, Schuhmann W, Andronescu C. Corros. Sci., 2015, 100:386.
[52] Zhou C L, Lu X, Xin Z, Zhang Y F. J.Coat. Technol. Res., 2016, 13(1):63.
[53] Patil D M, Phalak G A, Mhaske S T. J. Coat. Technol. Res., 2017, 14(3):517.
[54] Lu X, Liu Y, Zhou C L, Zhang W F, Xin Z. RSC Adv., 2016, 6(7):5805.
[55] Cao L, Jones A K, Sikka V K, Wu J Z, Gao D. Langmuir, 2009, 25(21):12444.
[56] Wang H, Tang L M, Wu X M, Dai W T, Qiu Y P. Appl. Surf. Sci., 2007, 253(22):8818.
[57] 秦涛(Qin T). 中国科技成果(Chinese Science and Technology Achievements), 2004(6):48.
[58] 曲丽(Qu L), 辛忠(Xin Z), 陆馨(Lu X), 董会杰(Dong H J). 微纳电子技术(Micronanoelectronic Technology), 2010(09):537.
[59] Erbil H Y, Demirel A L, Avci Y, Mert O. Science, 2003, 299(5611):1377.
[60] Jung Y C, Bhushan B. Nanotechnology, 2006, 17(19):4970.
[61] Lai Y K, Pan F, Xu C, Fuchs H, Chi L F. Adv. Mater., 2013, 25(12):1682.
[62] Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, Mckinley G H, Cohen R E. Science, 2007, 318(5856):1618.
[63] Xue Z, Liu M, Jiang L. J. Polym.Sci. B:Polym. Phys., 2012, 50(17):1209.
[64] Liu K, Jiang L. ACS Nano, 2011, 5(9):6786.
[65] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin L P. Science, 2015, 347(6226):1132.
[66] Wang C F, Chen H Y, Kuo S W, Lai Y S, Yang P F. RSC Adv., 2013, 3(25):9764.
[67] Zhang T, Yan H Q, Fang Z P, Yuping E, Wu T, Chen F. Appl. Surf. Sci., 2014, 309:218.
[1] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[2] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[3] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[4] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[5] 郭永刚, 朱亚超, 张鑫, 罗冰鹏. 表面超疏水对摩擦学性能的影响:机理、现状与展望[J]. 化学进展, 2020, 32(2/3): 320-330.
[6] 张俊, 韩磊, 曾渊, 田亮, 张海军. 选择性油水分离材料[J]. 化学进展, 2019, 31(1): 134-143.
[7] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[8] 曾新娟, 王丽, 皮丕辉, 程江, 文秀芳, 钱宇. 特殊润湿性油水分离材料的开发与研究[J]. 化学进展, 2018, 30(1): 73-86.
[9] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102-118.
[10] 顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28(5): 737-743.
[11] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[12] 田苗苗, 李雪梅, 殷勇, 何涛, 刘金盾. 超疏水膜的制备及其在膜蒸馏过程中的应用[J]. 化学进展, 2015, 27(8): 1033-1041.
[13] 詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 光响应固体表面的浸润性调控[J]. 化学进展, 2015, 27(2/3): 157-167.
[14] 张凯强, 李博, 赵蕴慧, 李辉, 袁晓燕. 功能性POSS聚合物及其应用[J]. 化学进展, 2014, 26(0203): 394-402.
[15] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.