English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 683-694 DOI: 10.7536/PC170231 前一篇   

• 综述 •

普鲁士蓝类材料在钠离子电池中的研究进展

王昊1,2, 邓邦为1,2, 葛武杰1,2, 陈滔1,2, 瞿美臻1, 彭工厂1*   

  1. 1. 中国科学院成都有机化学研究所 成都 610041;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2017-02-28 修回日期:2017-04-09 出版日期:2017-06-15 发布日期:2017-05-10
  • 通讯作者: 彭工厂,e-mail:pgc0102@163.com E-mail:pgc0102@163.com
  • 基金资助:
    国家自然科学基金项目(No.51474196),国家高技术研究发展计划(863计划)(No.2013AA031703)和“西部之光”人才培养计划资助

Recent Advances in Prussian Blue Analogues Materials for Sodium-Ion Batteries

Hao Wang1,2, Bangwei Deng1,2, Wujie Ge1,2, Tao Chen1,2, Meizhen Qu1, Gongchang Peng1*   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Science, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-02-28 Revised:2017-04-09 Online:2017-06-15 Published:2017-05-10
  • Contact: 10.7536/PC170231 E-mail:pgc0102@163.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51474196), the National High-Tech R&D Program of China (No. 2013AA031703) and the "Western Light" Project.
近年来,钠离子电池以其独特的优势引起了研究者广泛的关注,有望成为下一代可商业化的储能设备。然而,钠离子电池的发展也面临着诸多的挑战。以普鲁士蓝为代表的新型储能材料,具有开放式框架体系和多孔道结构,能容纳钠离子自由快速脱嵌,从而有效提高钠离子电池的电化学性能。本文从制备工艺、材料机理、修饰方法三方面综述了普鲁士蓝材料在钠离子电池领域的应用现状。特别介绍了迁移离子、过渡金属、结合水与空位对钠离子电池电化学性能的影响。同时,总结了基于普鲁士蓝类材料的水性电池、杂化电池和适配电解液的研究现状。最后,对目前应用中存在的问题和研究重点做了简要评论,展望了该研究领域下一步的发展方向和应用前景。
Recently, the attention to sodium-ion batteries (SIBs) has been aroused on the next generation energy storage systems applications, due to their specific advantages. However, the development of SIBs remains significant challenges. Owing to their open frameworks and porous channels for Na+ fast migration, the Prussian blue analogues (PBs) materials can effectively improve the electrochemical performance of SIBs. Herein, we summarize the recent advances and applications of PBs materials for SIBs in terms of preparation process, electronic mechanism and modification technology. The effects of migration ions, transition metals, bound water and vacancy on the electrochemical performance of SIBs are particularly introduced. Moreover, we summarize the research progress on the PBs-based aqueous SIBs, hybrid batteries and appropriate electrolyte. Further, the current difficulties and future research directions of the PBs-based SIBs are also discussed to give an outlook of the prospect trends and application potentials in energy storage systems.

Contents
1 Introduction
2 Preparation of Prussian blue analogues
2.1 Co-precipitation method
2.2 Hydrothermal method
3 Mechanism study of Prussian blue analogues
3.1 Migration ions
3.2 Transition metals
3.3 Bound water and vacancy
4 Modification of Prussian blue analogues
4.1 Doping
4.2 Coating
5 Aqueous rechargeable sodium-ion battery
6 Other researches
6.1 Metal-sodium hybrid battery
6.2 Electrolyte and separator
6.3 Security studies
7 Conclusion

中图分类号: 

()
[1] Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, Amine K. Nat. Mater., 2009, 8:320.
[2] Goodenough J B, Kim Y. Chem. Mater., 2010, 22:587.
[3] Armand J M T M. Nature, 2001, 414:359.
[4] Cho Y, Oh P, Cho J. Nano Lett., 2013, 13:1145.
[5] Jung Y S, Lu P, Cavanagh A S, Ban C, Kim G H, Lee S H, George S M, Harris S J, Dillon A C. Adv. Energy Mater., 2013, 3:213.
[6] Wang L P, Yu L H, Wang X, Srinivasan M, Xu Z C. J. Mater. Chem. A, 2015, 3:9353.
[7] Xiang X D, Zhang K, Chen J. Adv. Mater., 2015, 27:5343.
[8] Kubota K, Komaba S. J. Electrochem. Soc., 2015, 162:A2538.
[9] Fang C, Huang Y H, Zhang W X, Han J T, Deng Z, Cao Y L, Yang H X. Adv. Energy Mater., 2016, 6:18.
[10] Zhang N, Liu Y C, Chen C C, Tao Z L, Chen J. Chinese Journal of Inorganic Chemistry, 2015, 31:1739.
[11] Palomares V, Serras P, Villaluenga I, Hueso K B, Carretero Gonzalez J, Rojo T. Energy Environ. Sci., 2012, 5:5884.
[12] Sawicki M, Shaw L L. RSC Adv., 2015, 5:53129.
[13] Kundu D, Talaie E, Duffort V, Nazar L F. Angew. Chem. Int. Ed., 2015, 54:3431.
[14] You Y, Kim S O, Manthiram A. Adv. Energy Mater., 2017, 7:1601698.
[15] Wang P F, You Y, Yin Y X, Guo Y G. J. Mater. Chem. A, 2016, 4:17660.
[16] Dahbi M, Nakano T, Yabuuchi N, Ishikawa T, Kubota K, Fukunishi M, Shibahara S, Son J Y, Cui Y T, Oji H, Komaba S. Electrochem. Commun., 2014, 44:66.
[17] Whitacre J F, Tevar A, Sharma S. Electrochem. Commun., 2010, 12:463.
[18] Rudola A, Saravanan K, Mason C W, Balaya P. J. Mater. Chem. A, 2013, 1:2653.
[19] Lin Y M, Abel P R, Gupta A, Goodenough J B, Heller A, Mullins C B. ACS Appl. Mater. Interfaces, 2013, 5:8273.
[20] Mu L Q, Xu S Y, Li Y M, Hu Y S, Li H, Chen L Q, Huang X J. Adv. Mater., 2015, 27:6928.
[21] Xia W, Mahmood A, Zou R Q, Xu Q. Energy Environ. Sci., 2015, 8:1837.
[22] Wang P F, You Y, Yin Y X, Wang Y S, Wan L J, Gu L, Guo Y G. Angew. Chem. Int. Ed., 2016, 55:7445.
[23] Baxter J, Bian Z X, Chen G, Danielson D, Dresselhaus M S, Fedorov A G, Fisher T S, Jones C W, Maginn E, Kortshagen U, Manthiram A, Nozik A, Rolison D R, Sands T, Shi L, Sholl D, Wu Y Y. Energy Environ. Sci., 2009, 2:559.
[24] Cai D P, Liu B, Wang D D, Wang L L, Liu Y, Qu B H, Duan X C, Li Q H, Wang T H. J. Mater. Chem. A, 2016, 4:183.
[25] Combelles C, Ben Yahia M, Pedesseau L, Doublet M L. J. Phys. Chem. C, 2010, 114:9518.
[26] Matsuda T, Takachi M, Moritomo Y. Chem. Commun., 2013, 49:2750.
[27] Wang L, Song J, Qiao R M, Wray L A, Hossain M A, Chuang Y D, Yang W L, Lu Y H, Evans D, Lee J J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough J B. J. Am. Chem. Soc., 2015, 137:2548.
[28] Matsuda T, Kim J, Moritomo Y. J. Am. Chem. Soc., 2010, 132:12206.
[29] Keggin J F, Miles F D. Nature, 1936, 4:577.
[30] 杨旸(Yang Y), 严小敏(Yan X M), 杨德志(Yang D Z), 王红(Wang H), 廖小珍(Liao X Z), 马紫峰(Ma Z F). 储能科学与技术(Energy Storage Science and Technology),2016, 5:303.
[31] Perez E, Amador R N, Carboni M, Meyer D. Mater. Lett., 2016, 167:188.
[32] Wessells C D, Huggins R A, Cui Y. Nat. Commun., 2011, 2:5.
[33] Chen R J, Huang Y X, Xie M, Wang Z H, Ye Y S, Li L, Wu F. ACS Appl. Mater. Interfaces, 2016, 8:31669.
[34] Wu X Y, Deng W W, Qian J F, Cao Y L, Ai X P, Yang H X. J. Mater. Chem. A, 2013, 1:10130.
[35] Lu Y H, Wang L, Cheng J G, Goodenough J B. Chem Commun., 2012, 48:6544.
[36] Liu Y, Qiao Y, Zhang W X, Li Z, Ji X, Miao L, Yuan L X, Hu X L, Huang Y H. Nano Energy, 2015, 12:386.
[37] You Y, Yu X Q, Yin Y X, Nam K W, Guo Y G. Nano Res., 2015, 8:117.
[38] Lee H W, Wang R Y, Pasta M, Woo Lee S, Liu N, Cui Y. Nat. Commun., 2014, 5:5280.
[39] Pramudita J C, Schmid S, Godfrey T, Whittle T, Alam M, Hanley T, Brand H E A, Sharma N. Phys. Chem. Chem. Phys., 2014, 16:24178.
[40] Xiao P H, Song J, Wang L, Goodenough J B, Henkelman G. Chem. Mater., 2015, 27:3763.
[41] Sun H, Sun H B, Wang W, Jiao H D, Jiao S Q. RSC Adv., 2014, 4:42991.
[42] Jia Z J, Wang J, Wang Y. RSC Adv., 2014, 4:22768.
[43] You Y, Yao H R, Xin S, Yin Y X, Zuo T T, Yang C P, Guo Y G, Cui Y, Wan L J, Goodenough J B. Adv. Mater., 2016, 28:7243.
[44] Yu S H, Shokouhimehr M, Hyeon T, Sung Y E. ECS Electrochem. Lett., 2013, 2:A39.
[45] Li W J, Chou S L, Wang J Z, Kang Y M, Wang J L, Liu Y, Gu Q F, Liu H K, Dou S X. Chem. Mater., 2015, 27:1997.
[46] You Y, Wu X L, Yin Y X, Guo Y G. Energy Environ. Sci., 2014, 7:1643.
[47] Wang L, Lu Y H, Liu J, Xu M W, Cheng J G, Zhang D W, Goodenough J B. Angew. Chem. Int. Ed., 2013, 52:1964.
[48] Meng Q, Zhang W, Hu M, Jiang J S. Chem. Commun., 2016, 52:1957.
[49] Yue Y, Binder A J, Guo B, Zhang Z, Qiao Z A, Tian C, Dai S. Angew. Chem. Int. Ed., 2014, 53:3134.
[50] You Y, Wu X L, Yin Y X, Guo Y G. J. Mater. Chem. A, 2013, 1:14061.
[51] Lee H, Kim Y I, Park J K, Choi J W. Chem. Commun., 2012, 48:8416.
[52] Wu X Y, Luo Y, Sun M Y, Qian J F, Cao Y L, Ai X P, Yang H X. Nano Energy, 2015, 13:117.
[53] Xie M, Huang Y X, Xu M H, Chen R J, Zhang X X, Li L, Wu F. J. Power Sources, 2016, 302:7.
[54] Song J, Wang L, Lu Y H, Liu J, Guo B K, Xiao P H, Lee J J, Yang X Q, Henkelman G, Goodenough J B. J. Am. Chem. Soc., 2015, 137:2658.
[55] Wu X Y, Wu C H, Wei C X, Hu L, Qian J F, Cao Y L, Ai X P, Wang J L, Yang H X. ACS Appl. Mater. Interfaces, 2016, 8:5393.
[56] Moritomo Y, Urase S, Shibata T. Electrochim. Acta, 2016, 210:963.
[57] Xie M, Xu M H, Huang Y X, Chen R J, Zhang X X, Li L, Wu F. Electrochem. Commun., 2015, 59:91.
[58] Yu S L, Li Y, Lu Y H, Xu B, Wang Q T, Yan M, Jiang Y Z. J. Power Sources, 2015, 275:45.
[59] Minowa H, Yui Y, Ono Y, Hayashi M, Hayashi K, Kobayashi R, Takahashi K I. Solid State Ionics, 2014, 262:216.
[60] Yang D, Xu J, Liao X Z, He Y S, Liu H, Ma Z F. Chem. Commun., 2014, 50:13377.
[61] Jaumann T, Balach J, Klose M, Oswald S, Langklotz U, Michaelis A, Eckert J, Giebeler L. Phys. Chem. Chem. Phys., 2015, 17:24956.
[62] Cho W, Kim S M, Song J H, Yim T, Woo S G, Lee K W, Kim J S, Kim Y J. Journal of Power Sources, 2015, 282:45.
[63] Zhang X F, Belharouak I, Li L, Lei Y, Elam J W, Nie A M, Chen X Q, Yassar R S, Axelbaum R L. Adv. Energy Mater., 2013, 3:1299.
[64] Moritomo Y, Goto K, Shibata T. Energies, 2015, 8:9486.
[65] Yang D Z, Xu J, Liao X Z, Wang H, He Y S, Ma Z F. Chem. Commun., 2015, 51:8181.
[66] Prabakar S J R, Jeong J, Pyo M. RSC Adv., 2015, 5:37545.
[67] Nie P, Shen L F, Pang G, Zhu Y Y, Xu G Y, Qing Y H, Dou H, Zhang X G. J. Mater. Chem. A, 2015, 3:16590.
[68] Li W J, Chou S L, Wang J Z, Wang J L, Gu Q F, Liu H K, Dou S X. Nano Energy, 2015, 13:200.
[69] Zhou M, Zhu L M, Cao Y L, Zhao R R, Qian J F, Ai X P, Yang H X. RSC Adv., 2012, 2:5495.
[70] Tang Y, Zhang W X, Xue L H, Ding X L, Wang T, Liu X X, Liu J, Li X C, Huang Y H. J. Mater. Chem. A, 2016, 4:6036.
[71] Chen R J, Huang Y X, Xie M, Zhang Q Y, Zhang X X, Li L, Wu F. ACS Appl. Mater. Interfaces, 2016, 8:16078.
[72] Yang X K, Wang X Y, Hu L, Zou G S, Su S J, Bai Y S, Shu H B, Wei Q L, Hu B N, Ge L, Wang D, Liu L. Journal of Power Sources, 2013, 242:589.
[73] Wan M, Tang Y, Wang L L, Xiang X H, Li X C, Chen K Y, Xue L H, Zhang W X, Huang Y H. J. Power Sources, 2016, 329:290.
[74] Okubo M, Li C H, Talham D R. Chem. Commun., 2014, 50:1353.
[75] Fernández-Ropero A J, Piernas-Muñoz M J, Castillo-MartínezE, Rojo T, Casas-Cabanas M. Electrochim. Acta, 2016, 210:352.
[76] Yun J, Pfisterer J, Bandarenka A S. Energy Environ. Sci., 2016, 9:955.
[77] Wessells C D, Peddada S V, Huggins R A, Cui Y. Nano Lett., 2011, 11:5421.
[78] Dong H, Li Y F, Liang Y L, Li G S, Sun C J, Ren Y, Lu Y H, Yao Y. Chem. Commun., 2016, 52:8263.
[79] Lu K, Song B, Zhang J T, Ma H Y. J. Power Sources, 2016, 321:257.
[80] Piernas-Muñoz M M J, Castillo-Martínez E, Gómez-Cámer J L, Rojo T. Electrochim. Acta, 2016, 200:123.
[81] Yang Y, Brownell C R, Sadrieh N, May J C, Del Grosso A V, Lyon R C, Faustino P J. J. Pharm. Biomed. Anal., 2007, 43:1358.
[82] Johnson C A. Appl. Geochem., 2015, 57:194.
[83] Sun X, Ji X Y, Zhou Y T, Shao Y, Zang Y, Wen Z Y, Chen C H. J. Power Sources, 2016, 314:35.
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[5] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[6] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[13] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[14] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[15] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.