English
新闻公告
More
化学进展 2017, Vol. 29 Issue (2/3): 285-292 DOI: 10.7536/PC160925 前一篇   后一篇

• 综述 •

极性乙烯基单体立体选择性聚合催化剂

徐铁齐*   

  1. 大连理工大学 化学学院 大连 116023
  • 收稿日期:2016-09-22 修回日期:2017-01-11 出版日期:2017-02-15 发布日期:2017-02-27
  • 通讯作者: 徐铁齐 E-mail:tqxu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21274015,21574016)和辽宁省高等学校优秀人才支持计划(No.LJQ2015025)资助

Catalysts for Stereoselective Polymerization of Polar Vinyl Monomer

Tieqi Xu*   

  1. School of Chemistry, Dalian University of Technology, Dalian 116023, China
  • Received:2016-09-22 Revised:2017-01-11 Online:2017-02-15 Published:2017-02-27
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274015, 21574016) and the Program for Liaoning Excellent Talents in University (No.LJQ2015025).
极性单体是指带有极性基团的烯烃类单体,主要包括含卤素类极性单体、含氧类极性单体、含氮类极性单体和含磷类极性单体。其中带有乙烯基且与所带极性基团相共轭的极性单体称为极性乙烯基单体,如甲基丙烯酸甲酯、2-乙烯基吡啶和乙烯基磷酸酯等。这类单体所形成的极性乙烯基聚合物是极性基团作为侧链的烯烃聚合物,该类化合物在黏性、韧性、界面性质(染色性和印刷性)、与溶剂或其他聚合物的相容性方面较传统非极性聚烯烃材料有明显的优势。为了使聚合物具有好的物理性能,获得具有一定规整度的聚合物是近年来研究的热点。聚合物的立体结构对其本身的物理性能有着显著的影响,如熔点、玻璃化转变温度和机械性能等。获取立构规整性聚合物的最有效方式是发展催化聚合反应的立体选择性催化剂。本文综述了近几年极性乙烯基单体立体选择性聚合催化剂的研究进展,这里所涉及的极性乙烯基单体包括:丙烯酸酯类、丙烯酸酰胺、乙烯基磷酸酯、乙烯基吡啶和杂原子取代苯乙烯单体。所涉及的聚合体系是配位聚合、路易斯酸碱对和阴离子聚合体系。
The polar monomer is an olefin monomer with polar group. It includes polar monomer with halogen, polar monomer with oxygen atom, polar monomer with nitrogen atom, and polar monomer with phosphorus atom. The polar vinyl monomer is monomer with conjugated vinyl group and polar group. The polymerization of polar vinyl monomer produces a polymer with polar group. This polymer has obvious advantages over the traditional non-polar polyolefin materials in terms of viscosity, toughness, interfacial properties (dyeing and printing), and compatibility with solvents or other polymers. In order to obtain polymer with good physical properties, it is a hot spot to get a polymer with certain degree of regularity. The structure of the polymer has a significant impact on its physical properties, such as melting point, glass transition temperature and mechanical properties. The most effective way to obtain the stereoregular polymer is the development of the stereoselective catalysts for polar vinyl polymeization. This paper reviews the recent research progress in stereoselective catalysts for the polar vinyl monomer polymerization, the polar vinyl monomers involved include:methacrylate, methacrylamide, vinylphosphonate, vinyl pyridine, 2-isopropenyl-2-oxazoline and heteo-atom substituted styrene. The polymerization system includes the coordination polymerization, the Lewis pair, and the anionic polymerization system.

Contents
1 Introduction
2 Methacrylate and methylene-butyrolactone polymerization
2.1 Methyl methacrylate polymerization
2.2 Methylene-butyrolactone polymerization
2.3 Polar divinyl monomer polymerization
3 Methacrylamide and vinylphosphonate polymerization
4 Vinylpyridine and 2-isopropenyl-2-oxazoline polymerization
5 Hetero-atom substituted styrene polymerization
6 Copolymerization of ethylene and polar vinyl monomer
7 Conclusion

中图分类号: 

()
[1] Chen E Y X. Chem. Rev., 2009, 109:5157.
[2] Rodriguez-Delgado A, Chen E Y X. Macromolecules, 2005, 38:2587.
[3] Bolig A D, Chen E Y X. J. Am. Chem. Soc., 2004, 126:4897.
[4] Rosal I D, Tschan M J L, Gauvin R M, Maron L, Thomas C M.Polym. Chem., 2012, 3:1730.
[5] Chen Y, Liu Y, Zhang X, Zhang Z, Liu L, Fan D, Ding L, Lv X. Inorg. Chem. Comm., 2015, 53:1.
[6] Buchowicz W, Conder J, Hryciuk D, Zachara J. J. Mol. Cat. A, 2014, 381:16.
[7] Zhang Y, Miyake G M, Chen E Y X. Angew. Chem., Int. Ed., 2010, 49:10158.
[8] Zhang Y, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Dalton Trans., 2012, 41:9119.
[9] Zhang Y, Ning Y, Caporaso L, Cavallo L, Chen E Y X. J. Am. Chem. Soc., 2010, 132:2695.
[10] Escudé N C, Ning Y, Chen E Y X. Polym. Chem., 2012, 3:3247.
[11] Gowda R R, Caporaso L, Cavallo L, Chen E Y X. Organometallics, 2014, 33:4118.
[12] Xu T,Chen E Y X. J. Am. Chem. Soc., 2014, 136:1774.
[13] Hu Y, Wang X, Chen Y, Caporaso L, Cavallo L, Chen E Y X. Organometallics, 2013, 32:1459.
[14] Chen X, Caporaso L, Cavallo L, Chen E Y X. J. Am. Chem. Soc., 2012, 134:7278.
[15] Hu Y, Miyake G M, Wang B, Cui D, Chen E Y X. Chem.-Eur. J., 2012, 18:3345.
[16] Hu Y, Xu X, Zhang Y, Chen Y, Chen E Y X. Macromolecules,2010, 43:9328.
[17] Miyake G M, Newton S E, Mariott W R, Chen E Y X. Dalton Trans., 2010, 39:6710.
[18] Mohan Y M, Rauhunadh V, Sivaram S, Baskaran D. Macromolecules, 2012, 45:3387.
[19] Tannka S, Matsumoto M, Goseki R, Ishizone T, Hirao A. Macromolecules, 2013, 46:146.
[20] Tannka S, Goseki R, Ishizone T, Hirao A. Macromolecules, 2014, 47:2333.
[21] Jia Y B, Ren W M, Liu S J, Xu T Q, Wang Y B, Lu X B. ACS Macro Lett., 2014, 3:896.
[22] Chen J, Chen E Y X. Isr. J. Chem., 2015, 55:216.
[23] Xu T, Liu J, Lu X B. Macromolecules, 2015, 48:7428.
[24] Xu T, Liu J, Liu Y. Polyhedron, 2016, 113:50.
[25] Vidal F, Gowda R R, Chen E Y X. J. Am. Chem. Soc., 2015, 137:9469.
[26] Vidal F, Falivene L, Caporaso L, Cavallo L, Chen E Y X. J. Am. Chem. Soc., 2016, 138:9533.
[27] Mariott W R, Chen E Y X. Macromolecules, 2004, 37:4741.
[28] Mariott W R, Chen E Y X. Macromolecules, 2005, 38:6822.
[29] Miyake G M, Caporaso L, Cavallo L, Chen E Y X. Macromolecules, 2009, 42:1462.
[30] Komber H, Steinert V, Voit B. Macromolecules, 2008, 41:2119.
[31] Seemann U B, Dengler J E, Rieger B. Angew. Chem., Int. Ed., 2010, 122:3567.
[32] Salzinger S, Seemann U B, Plikhta A, Rieger B. Macromolecules, 2011, 44:5920.
[33] Rabe G W, Komber H, Haüssler L, Kreger K, Lattermann G. Macromolecules, 2010, 43:1178.
[34] Natta G, Mazzanti G, Longi P, Dall'Asta G, Bernardini F. J. Polym. Sci., 1961, 51:487.
[35] Natta G, Mazzanti G, Dall'Asta G, Longi P. Macromol. Chem., 1960, 37:160.
[36] He J, Zhang Y, Chen E Y X. Synlett, 2014, 25:1534.
[37] Zhang N, Salzinger S, Soller B S, Rieger B. J. Am. Chem. Soc., 2013, 135:8810.
[38] Altenbuchner P T, Soller B S, Kissling S, Bachmann T, Kronast A, Vagin S I, Rieger B. Macromolecules, 2014, 47:7742.
[39] Altenbuchner P T, Adams F, Kronast A, Herdtweck E, Pöthig A, Rieger B. Polym. Chem., 2015, 6:6796.
[40] Kronast A, Reiter D, Altenbuchner P T, Vagin S I, Rieger B. Macromolecules, 2016, 49:6260.
[41] Kaneko H, Nagae H, Tsurugi H, Mashima K. J. Am. Chem. Soc., 2011, 133:19626.
[42] Xu T Q, Yang G W, Lu X B. ACS Catal., 2016, 6:4907.
[43] Knaus M G M, Giuman M M, Pöthig A, Rieger B. J. Am. Chem. Soc., 2016, 138:7776.
[44] Natta G, Dall'Asta G, Mazzanti G, Casale A. Makromol. Chem., 1962, 58:217.
[45] Yuki H, Okamoto Y, Kuwae Y, Hatada K. J. Polym. Sci., Part A, 1969, 7:1933.
[46] Liu D, Yao C, Wang R, Wang M, Wang Z, Wu C, Lin F, Li S, Wan X, Cui D. Angew. Chem., Int. Ed., 2015, 54:5205.
[47] Liu D, Wang R, Wang M, Wu C, Wang Z, Yao C, Liu B, Wan X, Cui D. Chem. Commun., 2015, 51:4658.
[48] Xu G X, Chung T C. Macromolecules, 2000, 33:5803.
[49] Shi Z, Guo F, Li Y, Hou Z. J. Polym. Sci., Part A:Polym. Chem., 2015, 53:5.
[50] Johnson L K, Killian C M, Brookhart M. J. Am. Chem. Soc., 1995, 117:6414.
[51] Guo L, Chen C. Sci. China Chem., 2015, 58:1663.
[52] Guo L, Dai S, Sui X, Chen C. ACS Catal., 2016, 6:428.
[53] Dai S, Sui X, Chen C. Angew. Chem., Int. Ed., 2015, 54:9948.
[54] Dai S, Chen C. Angew. Chem., Int. Ed., 2016, 55:13281.
[55] Luo S, Vela J, Lief G R, Jordan R F. J. Am. Chem. Soc., 2007, 129:8946.
[56] Ota Y, Ito S, Kuroda J, Okumura Y, Nozaki K. J. Am. Chem. Soc., 2014, 136:11898.
[57] Jian Z, Baier M C, Mecking S. J. Am. Chem. Soc., 2015, 137:2836.
[58] Sui X, Dai S, Chen C. ACS Catal., 2015, 5:5932.
[59] Wu Z, Chen M, Chen C. Organometallics, 2016, 35:1472.
[60] Chen M, Yang B, Chen C. Angew. Chem., Int. Ed., 2015, 54:15520.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.