English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1615-1625 DOI: 10.7536/PC160547 前一篇   后一篇

• 综述与评论 •

等离子体增强上转换发光及其应用

赵兵1,2,3, 祁宁1,2, 张克勤1,2*   

  1. 1. 苏州大学纺织与服装工程学院 苏州 215021;
    2. 现代丝绸国家工程实验室(苏州) 苏州 215021;
    3. 苏州大学图书馆 苏州 215006
  • 收稿日期:2016-05-01 修回日期:2016-08-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 张克勤 E-mail:kqzhang@suda.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51503137,51373110),江苏高校优势学科建设工程项目和江苏省科技创新团队项目(2013)资助

Plasmon-Enhanced Upconversion Fluorescence and Its Application

Zhao Bing1,2,3, Qi Ning1,2, Zhang Keqin1,2*   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China;
    2. National Engineering Laboratory for Modern Silk(Suzhou), Suzhou 215021, China;
    3. Library of Soochow University, Suzhou 215006, China
  • Received:2016-05-01 Revised:2016-08-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51503137, 51373110), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Scientific and Technological Innovation Team (2013).
稀土上转换纳米材料(UCNPs)是一类在近红外光激发下发出可见光的纳米材料。与有机荧光染料、量子点等发光材料相比,UCNPs具有化学稳定性高、光稳定性强、荧光寿命长、反斯托克斯位移大、发光谱带窄和光穿透深度大等诸多优点,在生物成像、传感器、激光器、光动力疗法和太阳能电池等领域有潜在的应用价值。但是由于UCNPs激活离子的吸收截面太小,导致其发光效率偏低,限制了UCNPs的进一步应用。因而如何提高上转换发光强度成为当前的研究热点。针对上述问题,本文系统阐述了金属表面等离子体共振(SPR)增强上转换发光领域的研究进展。首先介绍了SPR增强上转换发光的三种机制,随后重点介绍了化学法和物理法这两种SPR-UCNPs体系的构建方法以及其在太阳能电池、生物成像、生物检测、光热治疗和光催化等领域的应用。文章最后指出了SPR增强上转换发光领域存在的不足和未来的研究方向。
Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of emitting visible light under near-infrared light excitation through a two-photon or multi-photon mechanism. Compared to other fluorescent materials such as organic dyes and quantum dots, UCNPs own superior physicochemical features such as chemical stability, high photostability, long-lived luminescence, large anti-Stokes shifts, narrow emission bands and deep penetration, which show potential applications in bioimaging, sensors, lasers, photodynamic therapy, solar cells and so on. However, the quantum yield of UCNPs is relatively low due to the small absorption cross-section of activator in UCNPs, limiting their further application. Therefore, how to improve the luminescence intensity of UCNPs has become a hotspot. A variety of methods such as core-shell nanostructure, phase transition and plasmon-enhanced upconversion have been developed in order to improve the fluorescence intensity of UCNPs. Among these methods, plasmon-enhanced upconversion as an efficient strategy has attracted extensive interests. In this review, three kinds of mechanisms about plasmon-enhanced upconversion luminescence are introduced firstly. Then construction methods of metal-UCNPs systems including chemical methods and physical methods, application of plasmon-enhanced upconversion luminescence in solar cells, bioimaging, bioassay, photothermal therapy and photocatalysis are discussed in detail. Finally, the limitations and directions for future research of plasmon-enhanced upconversion luminescence are also proposed.

Contents
1 Introduction
2 Mechanisms
2.1 Plasmon-enhanced excitation
2.2 Plasmon-enhanced emission
2.3 Energy transfer
3 Methods
3.1 Chemical methods
3.2 Physical methods
4 Applications
4.1 Solar cells
4.2 Bioimaging
4.3 Bioassay
4.4 Photothermal therapy
4.5 Photocatalysis
5 Conclusion

中图分类号: 

()
[1] Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem. Rev., 2015, 115(1):395.
[2] Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J. Chem. Soc. Rev., 2015, 44(6):1416.
[3] 王亚立(Wang Y L), 李贞(Li Z), 刘志洪(Liu Z H). 化学进展(Progress in Chemistry), 2016, 28(5):617.
[4] Lim C S, Aleksandrovsky A, Molokeev M, Oreshonkov A, Atuchin V. Phys. Chem. Chem. Phys., 2015, 17(29):19278.
[5] Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C. Chem. Rev., 2015, 115(19):10725.
[6] Yang W, Li X, Chi D, Zhang H, Liu X. Nanotechnology, 2014, 25:482001.
[7] 刘涛(Liu T),孙丽宁(Sun L N),刘政(Liu Z),仇衍楠(Chou Y N),施利毅(Shi L Y). 化学进展(Progress in Chemistry), 2012, 24(2/3):304.
[8] 姜玲(Jiang L), 阙亚萍(Que Y P), 丁勇(Ding Y), 胡林华(Hu L H), 张昌能(Zhang C N), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2016, 28(5):637
[9] Huang X, Han S, Huang W, Liu X. Chem. Soc. Rev., 2013, 42(1):173.
[10] Goldschmidt J C, Fischer S. Adv. Opt. Mater., 2015, 3(4):510.
[11] Wu D M, Garcia-Etxarri A, Salleo A, Dionne J A. J. Phys. Chem. Lett., 2014, 5(22):4020.
[12] Chen Z, Sun W, Butt H, Wu S. Chem.-Eur. J., 2015, 21(25):9165.
[13] Han S, Deng R, Xie X, Liu X. Angew. Chem., Int. Ed., 2014, 53(44):11702.
[14] Lin H, Xu D, Li A, Teng D, Yang S, Zhang Y. Phys. Chem. Chem. Phys., 2015, 17(29):19515.
[15] Wang F, Han Y, Lim C S, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X. Nature, 2010, 463(7284):1061.
[16] Zhao C, Kong X, Liu X, Tu L, Wu F, Zhang Y, Liu K, Zeng Q, Zhang H. Nanoscale, 2013, 5(17):8084.
[17] Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X. Nat. Mater., 2011, 10(12):968.
[18] Zhang F, Deng Y, Shi Y, Zhang R, Zhao D. J. Mater. Chem., 2010, 20(19):3895.
[19] Wang Y, Estakhri N M, Johnson A, Li H, Xu L, Zhang Z, Alu A, Wang Q, Shih C K. Sci. Rep., 2015, 5:10196.
[20] Li L, Green K, Hallen H, Lim S F. Nanotechnology, 2015, 26:025101.
[21] Zhan Q, Zhang X, Zhao Y, Liu J, He S. Laser Photonics Rev., 2015, 9(5):479.
[22] Ko C, Han Y, Wang W, Shieh J, Chen M. ACS Appl. Mater. Inter., 2014, 6(6):4179.
[23] Zeng S, Baillargeat D, Ho H, Yong K. Chem. Soc. Rev., 2014, 43(10):3426.
[24] Park W, Lu D, Ahn S. Chem. Soc. Rev., 2015, 44(10):2940.
[25] Shen J, Li Z Q, Chen Y R, Chen X H, Chen Y W, Sun Z, Huang S M. Appl. Surf. Sci., 2013, 270:712.
[26] Yin D, Wang C, Ouyang J, Zhang X, Jiao Z, Feng Y, Song K, Liu B, Cao X, Zhang L, Han Y, Wu M. ACS Appl. Mater. Inter., 2014, 6(21):18480.
[27] Feng A L, Lin M, Tian L, Zhu H Y, Guo H, Singamaneni S, Duan Z, Lu T J, Xu F. RSC Adv., 2015, 5(94):76825.
[28] Sun Q, Mundoor H, Ribot J C, Singh V, Smalyukh I I, Nagpal P. Nano Lett., 2014, 14(1):101.
[29] Lu D, Cho S K, Ahn S, Brun L, Summers C J, Park W. ACS Nano, 2014, 8(8):7780.
[30] Liu X, Lei D Y. Sci. Rep., 2015, 5:15235.
[31] Som T, Karmakar B. J. Appl. Phys., 2009, 105:013102.
[32] Dan H K, Zhou D, Wang R, Jiao Q, Yang Z, Song Z, Yu X, Qiu J. Ceram. Int., 2015, 41:2648.
[33] Chen X, Peng D, Ju Q, Wang F. Chem. Soc. Rev., 2015, 44(6):1318.
[34] Chen G, Agren H, Ohulchanskyy T Y, Prasad P N. Chem. Soc. Rev., 2015, 44(6):1680.
[35] Zhang X, Li B, Jiang M, Zhang L, Ma H. RSC Adv., 2016, 6(43):36528.
[36] Zhang H, Li Y, Ivanov I A, Qu Y, Huang Y, Duan X. Angew. Chem. Int. Ed., 2010, 49(16):2865.
[37] Kannan P, Rahim F A, Chen R, Teng X, Huang L, Sun H, Kim D. ACS Appl. Mater. Inter., 2013, 5(9):3508.
[38] Yuan P, Lee Y H, Gnanasammandhan M K, Guan Z, Zhang Y, Xu Q. Nanoscale, 2012, 4(16):5132.
[39] Deng W, Sudheendra L, Zhao J, Fu J, Jin D, Kennedy I M, Goldys E M. Nanotechnology, 2011, 22:325604.
[40] Priyam A, Idris N M, Zhang Y. J. Mater. Chem., 2012, 22(3):960.
[41] Fujii M, Nakano T, Imakita K, Hayashi S. J. Phys. Chem. C, 2013, 117(2):1113.
[42] Xu Z, Quintanilla M, Vetrone F, Govorov A O, Chaker M, Ma D. Adv. Funct. Mater., 2015, 25(20):2950.
[43] Kannan P, Rahim F A, Teng X, Chen R, Sun H, Huang L, Kim D. RSC Adv., 2013, 3(21):7718.
[44] Zhang F, Braun G B, Shi Y, Zhang Y, Sun X, Reich N O, Zhao D, Stucky G. J. Am. Chem. Soc., 2010, 132(9):2850.
[45] Zhang C, Lee J Y. J. Phys. Chem. C, 2013, 117(29):15253.
[46] Ge W, Zhang X R, Liu M, Lei Z W, Knize R J, Lu Y. Theranostics, 2013, 3(4):282.
[47] Li H, Deng Q, Liu B, Yang J, Wu B. RSC Adv., 2016, 6(16):13343.
[48] Yin D, Cao X, Zhang L, Tang J, Huang W, Han Y, Wu M. Dalton Trans., 2015, 44(24):11147.
[49] Xu W, Xu S, Zhu Y, Liu T, Bai X, Dong B, Xu L, Song H. Nanoscale, 2012, 4(22):6971.
[50] Das R, Phadke P, Khichar N, Chawla S. J. Mater. Chem. C, 2014, 2(42):8880.
[51] Feng W, Sun L, Yan C. Chem. Commun., 2009, (29):4393.
[52] Saboktakin M, Ye X, Oh S J, Hong S, Fafarman A T, Chettiar U K, Engheta N, Murray C B, Kagan C R. ACS Nano, 2012, 6(10):8758.
[53] Feng A L, You M L, Tian L, Singamaneni S, Liu M, Duan Z, Lu T J, Xu F, Lin M. Sci. Rep., 2015, 5:7779.
[54] Zhang H, Xu D, Huang Y, Duan X. Chem. Commun., 2011, 47(3):979.
[55] Zhao B, Qi N, Zhang K Q, Gong X. Phys. Chem. Chem. Phys., 2016, 18:15289.
[56] Shen J, Li Z Q, Chen Y R, Chen X H, Chen Y W, Sun Z, Huang S M. Appl. Surf. Sci., 2013, 270:712.
[57] Xu W, Zhu Y, Chen X, Wang J, Tao L, Xu S, Liu T, Song H. Nano Res., 2013, 6(11):795.
[58] Zhu Y, Xu W, Li G, Cui S, Liu X, Song H. Nanotechnology, 2015, 26:145602.
[59] Xu W, Song H, Chen X, Wang H, Cui S, Zhou D, Zhou P, Xu S. Chem. Commun., 2015, 51(8):1502.
[60] Chen X, Xu W, Zhang L, Bai X, Cui S, Zhou D, Yin Z, Song H, Kim D. Adv. Funct. Mater., 2015, 25(34):5462.
[61] Greybush N J, Saboktakin M, Ye X, Della Giovampaola C, Oh S J, Berry N E, Engheta N, Murray C B, Kagan C R. ACS Nano, 2014, 8(9):9482.
[62] Lee K, Park J, Kwon S J, Kwon H, Kyhm J, Kwak K, Jang H S, Kim S Y, Han J S, Lee S, Shin D, Ko H, Han I, Ju B, Kwon S, Ko D. Nano Lett., 2015, 15(4):2491.
[63] Saboktakin M, Ye X, Chettiar U K, Engheta N, Murray C B, Kagan C R. ACS Nano, 2013, 7(8):7186.
[64] Paudel H P, Zhong L, Bayat K, Baroughi M F, Smith S, Lin C, Jiang C, Berry M T, May P S. J. Phys. Chem. C, 2011, 115(39):19028.
[65] Zhang W, Ding F, Chou S Y. Adv. Mater., 2012, 24(35):P236.
[66] Fisher J, Zhao B, Lin C, Berry M, May P S, Smith S. J. Phys. Chem. C, 2015, 119(44):24976.
[67] Lian H, Hou Z, Shang M, Geng D, Zhang Y, Lin J. Energy, 2013, 57:270.
[68] Atre A C, Garcia-Etxarri A, Alaeian H, Dionne J A. J. Optics, 2012, 14:024008.
[69] Zhou B, Shi B, Jin D, Liu X. Nat. Nanotechnol., 2015, 10(11):924.
[70] Idris N M, Jayakumar M K G, Bansal A, Zhang Y. Chem. Soc. Rev., 2015, 44(6):1449.
[71] Tsang M, Bai G, Hao J. Chem. Soc. Rev., 2015, 44(6):1585.
[72] Cheng Z, Lin J. Macromol. Rapid Comm., 2015, 36(9):790.
[73] Yuan C, Chen G, Li L, Damasco J A, Ning Z, Xing H, Zhang T, Sun L, Zeng H, Cartwright A N, Prasad P N, Agren H. ACS Appl. Mater. Inter., 2014, 6(20):18018.
[74] Ramasamy P, Manivasakan P, Kim J. RSC Adv., 2014, 4(66):34873.
[75] Trupke T, Green M A, Wurfel P. J. Appl. Phys., 2002, 92(7):4117.
[76] Zhang X D, Jin X, Wang D F, Xiong S Z, Geng X H, Zhao Y. Physica Status Solidi (c), 2010, 7:1128.
[77] Yu J, Yang Y, Fan R, Wang P, Dong Y. Nanoscale, 2016, 8(7):4173.
[78] Li Q, Lin J, Wu J, Lan Z, Wang Y, Peng F, Huang M. Electrochim. Acta, 2011, 56(14):4980.
[79] Yu J, Yang Y, Fan R, Liu D, Wei L, Chen S, Li L, Yang B, Cao W. Inorg. Chem., 2014, 53(15):8045.
[80] Yu J, Yang Y, Fan R, Zhang H, Li L, Wei L, Shi Y, Pan K, Fu H. J. Power Sources, 2013, 243:436.
[81] Guo W, Zheng K, Xie W, Sun L, Shen L, Liu C, He Y, Zhang Z. Sol. Energ. Mat. Sol. C., 2014, 124:126.
[82] Chen W, Hou Y, Osvet A, Guo F, Kubis P, Batentschuk M, Winter B, Spiecker E, Forberich K, Brabec C J. Org. Electron., 2015, 19:113.
[83] Chen S, Peng B, Lu F, Mei Y, Cheng F, Deng L, Xiong Q, Wang L, Sun X, Huang W. Adv. Opt. Mater., 2014, 2(5):442.
[84] Lee S, Li W, Dhar P, Malyk S, Wang Y, Lee W, Benderskii A, Yoon J. Adv. Energy Mater., 2015, 5:1500761.
[85] Li Z Q, Li X D, Liu Q Q, Chen X H, Sun Z, Liu C, Ye X J, Huang S M. Nanotechnology, 2012, 23:025402.
[86] Liu T, Bai X, Miao C, Dai Q, Xu W, Yu Y, Chen Q, Song H. J. Phys. Chem. C, 2014, 118(6):3258.
[87] Liu Y, Xia Y, Jiang Y, Zhang M, Sun W, Zhao X. Electrochim. Acta, 2015, 180:394.
[88] Zhao P, Zhu Y, Yang X, Jiang X, Shen J, Li C. J. Mater. Chem. A, 2014, 2(39):16523
[89] Luoshan M, Bai L, Bu C, Liu X, Zhu Y, Guo K, Jiang R, Li M, Zhao X. J. Power Sources, 2016, 307:468.
[90] Ramasamy P, Kim J. Chem. Commun., 2014, 50(7):879.
[91] Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee S, Liu Z. Angew. Chem., Int. Ed., 2011, 50(32):7385.
[92] Idris N M, Li Z, Ye L, Sim E K W, Mahendran R, Ho P C, Zhang Y. Biomaterials, 2009, 30(28):5104.
[93] Jalil R A, Zhang Y. Biomaterials, 2008, 29(30):4122.
[94] Ni J, Shan C, Li B, Zhang L, Ma H, Luo Y, Song H. Chem. Commun., 2015, 51(74):14054.
[95] Wang L Y, Yan R X, Hao Z Y, Wang L, Zeng J H, Bao J, Wang X, Peng Q, Li Y D. Angew. Chem. Int. Ed., 2005, 44(37):6054.
[96] Zhang S, Wang J, Xu W, Chen B, Yu W, Xu L, Song H. J. Lumin., 2014, 147:278.
[97] Liu W, Liu G, Wang J, Dong X, Yu W. RSC Adv., 2016, 6(4):3250.
[98] Chen C, Lee P, Chan Y, Hsiao M, Chen C, Wu P C, Wu P R, Tsai D P, Tu D, Chen X, Liu R. J. Mater. Chem. B, 2015, 3(42):8293.
[99] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L, Song H. J. Mater. Chem., 2011, 21(17):6193.
[100] Ge M, Cao C, Li S, Tang Y, Wang L, Qi N, Huang J, Zhang K, Al-Deyab S S, Lai Y. Nanoscale, 2016, 8(9):5226.
[101] Jiang W, Bai S, Wang L, Wang X, Yang L, Li Y, Liu D, Wang X, Li Z, Jiang J, Xiong Y. Small, 2016, 12(12):1640.
[102] Yin D, Zhang L, Cao X, Chen Z, Tang J, Liu Y, Zhang T, Wu M. Dalton Trans., 2016, 45(4):1467.[FL)] [ST] [WT] [LM]
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[11] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[12] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[15] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.