English
新闻公告
More
化学进展 2016, Vol. 28 Issue (11): 1626-1633 DOI: 10.7536/PC160503 前一篇   后一篇

• 综述与评论 •

铃木-宫浦羰化反应在合成二芳基甲酮中的应用

朱壮丽, 张伟强*, 高子伟*   

  1. 教育部表面与胶体化学重点实验室 陕西师范大学化学化工学院 西安 710100
  • 收稿日期:2016-05-01 修回日期:2016-08-01 出版日期:2016-11-15 发布日期:2016-10-08
  • 通讯作者: 张伟强, 高子伟 E-mail:zwq@snnu.edu.cn;zwgao@snnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21271124,21272186,21371112,21446014),111计划(B14041),中央高校基本科研基金项目(No.GK201501005,GK201503029,2016CSY002),国家教育部博士点专项基金(No.20120202120005)和长江学者与创新团队发展计划(No.IRT_14R33)资助

Suzuki-Miyaura Carbonylative Reaction in the Synthesis of Biaryl Ketones

Zhu Zhuangli, Zhang Weiqiang*, Gao Ziwei*   

  1. Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710100, China
  • Received:2016-05-01 Revised:2016-08-01 Online:2016-11-15 Published:2016-10-08
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (No. 21271124, 21272186, 21371112, 21446014), the 111 Project (B14041), the Fundamental Funds Research for the Central Universities (No. GK201501005, GK201503029, 2016CSY002), the Fundamental Doctoral Fund of Ministry of Education of China (No. 20120202120005), and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_14R33).
近年来,钯催化的芳基卤化物和芳基硼酸化合物的羰化偶联反应发展十分迅速。到目前为止,大量硼酸化合物、钯催化剂前体、配体和羰基源被用来合成二芳基甲酮,此类化合物在工业中间体、染料、药剂、天然产物等领域有着广泛的应用。本文从钯催化剂体系、转金属促进剂、羰基源及其应用方面综述了铃木-宫蒲(Suzuki-Miyaura or Suzuki)羰化反应的研究进展。钯催化剂体系从均相和非均相体系两方面介绍,其中均相催化体系包括钯催化剂前驱体、磷配体、氮杂卡宾配体的研究进展;非均相催化体系主要介绍了活性炭、石墨烯、官能化硅胶、四氧化三铁等载体多种固载钯催化剂的应用。特戊酸添加剂可改善转金属化过程,有效加速羰化偶联反应。经典的羰化Suzuki反应一般需要气体钢瓶提供压力较高的一氧化碳气体。尽管近期一些研究实现了常压一氧化碳气球作为羰基供给源,使用一氧化碳释放分子(CO-releasing molecule,CORM)替代剧毒危险的一氧化碳气体可实现更为安全绿色的羰化反应进程。在双管反应器中,有机CORM可控降解释放一氧化碳,为钯催化羰基偶联反应提供CO。在微波辐射下,过渡金属羰基化合物可为羰基化反应原位直接提供CO。
Palladium-catalyzed carbonylative coupling reactions of aromatic halides and aryl boronic acids have been rapidly developed during recent years. Nowadays, a plethora of boronic acid compounds, palladium catalyst precursors and CO resources are available for the synthesis of diaryl ketones, which are important intermediates in the manufacture of dyes, pharmaceuticals and natural products. In this review, we summarize the development of these carbonylative reactions with aspects of palladium catalyst system, transmetallation, alternative CO resources and application. The progress on palladium catalyst system covers both homogeneous and heterogeneous reaction systems. A large variety of palladium catalyst precursors, phosphine ligands, HNC ligands in different solvents are discussed in detail, whilst palladium catalysts immobilized on active carbon, graphene, ligand functionalized silica gel, Fe3O4 are also included. Notably, the improvement in the transmetallation process is potentially valuable of achieving efficient carbonylative coupling reaction, in which the pivalic acid additive is found to accelerate the carbonylative coupling. In the classic carbonylative procedure, CO gas from high pressurized cylinders is required in palladium catalyzed Suzuki carbonylative reaction. Although few innovations using CO balloon is reported, the replace of odorless and toxic CO gas by carbon monoxide release molecules (CORM) are highly desirable and offered a safer and greener carbonylation process. To supply CO for palladium-catalyzed carbonylative coupling reaction, various organic CORMs releases CO via controllable degradation in two-chamber system. Transition metal carbonyl compounds as solid CORM directly provides CO under microwave radiation.

Contents
1 Introduction
2 Pd catalyzed Suzuki carbonylation
2.1 Homogeneous Suzuki carbonylation
2.2 Heterogeneous Suzuki carbonylation
3 Transmetalation of Suzuki carbonylation
4 New carbonyl source of Suzuki carbonylation
5 Examples
6 Prospect of Suzuki carbonylation

中图分类号: 

()
[1] Ong A L, Kamaruddin A H, Bhatia S. Process Biochem., 2005, 40:3526.
[2] Boscá F, Miranda M A. J. Photochem. Photobiol. B Biol., 1998, 43:1.
[3] Wu X F, Neumanna H, Beller M. Chem. Soc. Rev., 2011,40:4986.
[4] Barnard C F J. Organometallics, 2008, 27:5402.
[5] Garrou P E, Heck R F. J. Am. Chem. Soc., 1976, 98:4115.
[6] Yamamoto T, Kohara T, Yamamoto A. Chem. Lett., 1976, 5:1217.
[7] Hatanaka Y, Fukushima S, Hiyama T. Tetrahedron, 1992, 48:2113.
[8] Bumagin N A, Ponomaryov A B, Beletskaya I P. Tetrahedron Lett., 1985, 26:4819.
[9] Wakita Y, Yasunaga T, Akita M, Kojima M. J. Organomet. Chem., 1986, 301:C17.
[10] Ishiyama T, Miyaura N, Suzuki A. Bull. Chem. Soc. (Jpn.), 1991, 64:1999.
[11] Ishiyama T, Miyaura N, Suzuki A. Tetrahedron Lett., 1991, 32:6923;
[12] Ishiyama T, Kizaki H, Miyaura N, Suzuki A. Tetrahedron Lett., 1993, 34:7595.
[13] Ishiyama T, Kizaki H, Hayashi T, Suzuki A, Miyaura N. J. Org. Chem., 1998, 63:4726.
[14] Mingji D, Liang B, Wang C, You Z, Xiang J, Dong G, Chen J, Yang Z. Adv. Synth. Catal., 2004, 346:1669.
[15] Zheng S, Xu L, Xia C. Appl. Organomet. Chem., 2007, 21:772.
[16] O'Keefe B M, Simmons N, Martin S F. Org. Lett., 2008, 10:5301.
[17] Neumann H, Brennfuhrer A, Beller M. Chem.-Eur. J., 2008, 14:3645.
[18] Tambade P J, Patil Y P, Panda A G, Bhanage B M. Eur. J. Org. Chem., 2009, 3022.
[19] Kaganovsky L, Gelman D, Rueck-Braun K. J. Organomet. Chem., 2010, 695:260.
[20] Li H, Yang M, Qi Y, Xue J. Eur. J. Org. Chem., 2011, 2011, 2662.
[21] Paluru D K, Dey S, Chaudhari K R, Khedkar M V, Bhanage B M, Jain V K. Tetrahedron Lett., 2014, 55:2953.
[22] Gautam P, Bhanage B M. J. Org. Chem., 2015, 80:7810.
[23] Hao Y, Jiang J, Wang Y, Jin Z. Catal. Commun., 2015, 71:106.
[24] Zheng G, Wang P, Cai M. Chin. J. Chem., 2009, 27:1420.
[25] Zhao H, Zheng G, Sheng S, Cai M. Catal. Commun., 2009, 11:158.
[26] Cai M, Peng J, Hao W, Ding G. Green Chem., 2011, 13:190.
[27] Khedkar M V, Tambade P J, Qureshi Z S, Bhanage B M. Eur. J. Org. Chem., 2010, 2010:6981.
[28] Qureshi Z S, Deshmukh K M, Tambade P J, Bhanage B M. Synthesis, 2011, 2011:243.
[29] Niu J R, Huo X, Zhang F W, Wang H B, Zhao P, Hu W Q, Ma J, Li R. ChemCatChem., 2013, 5:349.
[30] Niu J, Liu M, Wang P, Long Y, Xie M, Li R, Ma J. New J. Chem., 2014, 38:1471.
[31] Zhu X, Niu J, Zhang F, Zhou J, Li X, Ma J. New J. Chem., 2014, 38:4622.
[32] Long Y, Liang K, Niu J, Tong X, Yuan B, Ma J. New J. Chem., 2015, 39:2988.
[33] Biying A O, Vangala V R, Chen C S, Stubs L P, Hosmane N S, Zhu Y H. Dalton Trans., 2014, 43:5014.
[34] Zhou Q, Wei S, Han W. J. Org. Chem., 2014, 79:1454.
[35] Zhong Y, Han W. Chem. Commun., 2014, 50:3874.
[36] Jin F, Han W. Chem. Commun., 2015, 51:9133.
[37] Morimoto T, Kakiuchi K. Angew. Chem., Int. Ed., 2004, 43:5580.
[38] Ahlburg A, Lindhardt A T, Taaning R H, Modvig A, ESkrydstrup T. J. Org. Chem., 2013, 78:10310.
[39] Jafarpour F, Rashidi-Ranjbar P, Kashani A O. Eur. J. Org. Chem., 2011, 2011:2128.
[40] Ang W J, Lo L C, Lam Y. Tetrahedron, 2014, 70:8545.
[41] Iranpoor N, Firouzabadi H, Etemadi-Davan E. J. Organomet. Chem., 2015, 794:282.
[42] Cobb J E, Blanchard S G, Boswell E G, Brown K K, Charifson P S, Coope J P, Collins J L, Dezube M, Henke B R, Hull-Ryde E A, Debra H L, Lenhard J M, William O J, Oplinger J, Pentti M, Parks D J, Plunket K D, Tong W Q. J. Med. Chem., 1998, 41:5055.
[43] Chowdhury S, Bridson J N, Georghiou P E. J. Org. Chem., 2000, 65:3299.
[44] Nadera M W, Oberdorferb F. Appl. Radiat. Isot., 2002, 57:681.
[45] Li Q, Claiborne A, Li T, Hasvold L, Stoll V S, Muchmore S, Jakob C G, Gu W, Cohen J, Hutchins C, Frost D, Rosenberg S H, Sham H L. Bioorg. Med. Chem. Lett., 2004, 14:5367.
[46] Michon C, Liu S, Hiragushi S, Uenishi J i, Uemura M. Tetrahedron, 2008, 64:11756.
[47] Neumann H, Brennführer A, Beller M. Adv. Synth. Catal., 2008, 350:2437
[48] Tobisu M, Xu T, Shimasaki T, Chatani N. J. Am. Chem. Soc., 2011, 133:19505.
[49] Huang J, Wan C, Xu M F, Zhu Q. Eur. J. Org. Chem., 2013, 2013:1876.
[50] Dahl K, Itsenko O, Rahman O, Ulin J, Sjoberg C O, Sandblom P, Larsson L A, Schou M, Halldin C. J. Labelled Comp. Radiopharm., 2015, 58:220.[FL)] [ST] [WT] [LM]
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.