English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1784-1798 DOI: 10.7536/PC150629 前一篇   后一篇

• 综述与评论 •

刺激响应降解型聚合物水凝胶

程新峰1,2, 金勇3,4*, 漆锐1,2, 樊宝珠1,2, 李汉平3,4   

  1. 1. 中国科学院成都有机化学研究所 成都 610041;
    2. 中国科学院大学 北京 100049;
    3. 四川大学皮革化学与工程教育部重点实验室 成都 610065;
    4. 四川大学制革清洁技术国家工程实验室 成都 610065
  • 收稿日期:2015-06-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 金勇 E-mail:jinyong@cioc.ac.cn
  • 基金资助:
    国家高技术研究发展(863)项目(No.2013AA06A306),国家自然科学基金项目(No.21474065)和四川省学术和技术带头人培养资金项目(川人2015/100-5)资助

Stimuli-Responsive Degradable Polymeric Hydrogels

Cheng Xinfeng1,2, Jin Yong3,4*, Qi Rui1,2, Fan Baozhu1,2, Li Hanping3,4   

  1. 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory for Leather Chemistry and Engineering of the Education Ministry, Sichuan University, Chengdu 610065, China;
    4. National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
  • Received:2015-06-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National High-Tech Research and Development Projects (863) (No. 2013AA06A306), the National Natural Science Foundation of China (No. 21474065), and the Sichuan Province Leaders in Academic and Technical Training Project Funding (No. 2015/100-5).
作为一类重要的高分子材料,聚合物水凝胶由于其优良的理化性能和生物学特性而被广泛应用于生物医药领域,降解特性是其作为生物医用材料的重要性能指标。刺激响应降解型水凝胶是指在环境因素刺激下凝胶网络发生响应性断裂,进而产生凝胶-溶胶或溶胀-降解转变的一类智能高分子材料。这一响应降解特性可通过将环境敏感性断裂基团引入到聚合物凝胶网络中来实现。与水凝胶常规的水解、酶解相比,刺激响应降解因具有空间或时间上的可控特性而引起人们的广泛关注。本文重点介绍了pH响应、光响应以及氧化还原响应降解型聚合物水凝胶的设计方法、降解机理及其最新研究进展,并对刺激响应降解型水凝胶未来的研究方向进行了展望。
Polymeric hydrogels, as an important class of polymeric materials, have found widespread use in biomedical and pharmaceutical fields due to their excellent physicochemical and biological characteristics. Degradability is an important parameter when considering the application of polymeric hydrogels in the biomedical fields. Stimuli-responsive degradable (SRD) hydrogel is a kind of intelligent materials, whose network structure can be cleaved in response to external environmental triggers, resulting in a gel-sol or swelling-degradation transition behavior. The stimuli-responsive degradability can be realized by incorporation of environment-sensitive labile or cleavable groups into the gel network. Moreover, this characteristic SRD ability has attracted tremendous interests due to the triggered and controlled degradability in space or in time as compared to the conventional hydrolysis and enzymolysis. This review mainly focuses on the design methods, mechanisms of degradation and most recent studies of SRD hydrogels whose bonds responsively broken by pH, photo and redox triggers. Finally, a perspective on the future research directions of the SRD hydrogels is briefly discussed.

Contents
1 Introduction
2 Stimuli-responsive degradable polymeric hydrogels
2.1 pH-responsive degradable polymeric hydrogels
2.2 Photo-responsive degradable polymeric hydrogels
2.3 Redox-responsive degradable polymeric hydrogels
2.4 Others
3 Conclusion and outlook

中图分类号: 

()
[1] Kope D?ek J. Biomaterials. 2007, 28(34): 5185.
[2] Park K, Park H. Smart Hydrogels, in: J.C. Salamone (Ed.), Concise Polymeric Materials Encyclopedia, CRC Press, Boca Raton, 1999. 1476.
[3] Drury J L, Mooney D J. Biomaterials, 2003, 24(24): 4337.
[4] Wang K, Fu Q, Chen X, Gao Y, Dong K. RSC Adv., 2012, 2(20): 7772.
[5] Tran N Q, Joung Y K, Lih E, Park K M, Park K D. Biomacromolecules, 2010, 11(3): 617.
[6] van Vlierberghe S, Dubruel P, Schacht E. Biomacromolecules, 2011, 12(5): 1387.
[7] Li Y, Rodrigues J, Tomas H. Chem. Soc. Rev., 2012, 41(6): 2193.
[8] Sharma S K, Mudhoo A. A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. RSC Green Chemistry. 2011.12. 365.
[9] Park K M, Lee S Y, Joung Y K, Na J S, Lee M C, Park K D. Acta Biomater., 2009, 5(6): 1956.
[10] Ha D, Lee S, Chong M, Lee Y, Kim S, Park Y. Macromol. Res., 2006, 14(1): 87.
[11] Jeon O, Powell C, Solorio L D, Krebs M D, Alsberg E. J. Control. Release, 2011, 154(3): 258.
[12] Young S, Wong M, Tabata Y, Mikos A G. J. Control. Release, 2005, 109(1/3): 256.
[13] Park M H, Joo M K, Choi B G, Jeong B. Acc. Chem. Res., 2012, 45(3): 424.
[14] Deshayes S, Kasko A M. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(17): 3531.
[15] Zhang Y F, Wang R, Hua Y Y, Baumgartner R, Cheng J J. ACS Macro Lett., 2014, 3: 693.
[16] 余丽丽(Yu L L),姚琳(Yao L),尤静(You J),梁飞(Liang F),白林奎(Bai L K). 功能材料(Functional Materials), 2015,46(6): 6134.
[17] Cui N, Qian J M, Liu T, Zhao N, Wang H J. Carbohydr. Polym., 2015, 126: 192.
[18] Garripelli V K, Kim J K, Namgung R, Kim W J, Repka M A, Jo S. Acta Biomater., 2010, 6(2): 477.
[19] Kloxin A M, Kasko A M, Salinas C N, Anseth K S. Science, 2009, 324(5923): 59.
[20] Han S C, He W D, Li J, Li L Y, Sun X L, Zhang B Y, Pan T T. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(16): 4074.
[21] Kharkar P M, Kiick K L, Kloxin A M. Chem. Soc. Rev., 2013, 42(17): 7335.
[22] 赵三平(Zhao S P),徐卫林(Xu W L).化学进展(Progress in Chemistry), 2010, 22(5): 916.
[23] Liao X J, Chen G S, Jiang M. Polym. Chem., 2013, 4(6): 1733.
[24] Tan S, Ladewig K, Fu Q, Blencowe A, Qiao G G. Macromol. Rapid Commun., 2014, 35(13): 1166.
[25] 高春梅(Gao C M),柳明珠(Liu M Z),吕少瑜(Lv S Y), 陈晨(Chen C),黄银娟(Huang Y J),陈远谋(Chen Y M). 化学进展(Progress in Chemistry),2013, 25(6): 1012.
[26] Simes S, Moreira N J, Fonseca C, Düzgünes N, Maria C, Lima P D. Adv. Drug Deliver Rev., 2004, 56(7): 947.
[27] Lee E S, Na K, Bae Y H. J. Control. Release, 2003, 91(1/2): 103.
[28] Binauld S, Stenzel M H. Chem. Commun., 2013, 49(21): 2082.
[29] Sui X, Shi Y, Fu Z. Aust. J. Chem., 2010, 63(10): 1497.
[30] Rikkou-Kalourkoti M, Loizou E, Porcar L, Matyjaszewski K, Patrickios C S. Polym. Chem., 2012, 3(1): 105.
[31] Burek M, Czuba Z P, Waskiewicz S. Polymer, 2014, 55(25): 6460.
[32] Tauk L, Schröder A P, Decher G, Giuseppone N. Nat. Chem., 2009, 1(8): 649.
[33] Rowan S J, Cantrill S J, Cousins G R L, Sanders J K M, Stoddart J F. Angew. Chem., Int. Ed., 2002, 41(6): 898.
[34] Shi J, Wang G B, Chen H L, Zhong W, Qiu X Z, Xing M M Q. Polym. Chem., 2014, 5(21): 6180.
[35] Yu J, Ha W, Chen J, Shi Y P. RSC Adv., 2014, 4(103): 58982.
[36] Vetrík M, P D?ádn DýM, Hrub DýM, Michálek J. Polym. Degrad. STab., 2011, 96(5): 756.
[37] Patenaude M, Hoare T. ACS Macro Lett., 2012, 1(3): 409.
[38] Patenaude M, Hoare T. Biomacromolecules, 2012, 13(2): 369.
[39] Lu C, Wang X, Wu G, Wang J, Wang Y, Gao H, Ma J. J. Biomed. Mater. Res. A, 2014, 102(3): 628.
[40] Cordes E H, Bull H G. Chem. Rev., 1974, 74(5): 581.
[41] Heller J, Barr J, Ng S Y, Abdellauoi K S, Gurny R. Adv. Drug Delivery Rev., 2002, 54(7): 1015.
[42] Tang R, Palumbo R N, Ji W, Wang C. Biomacromolecules, 2009, 10(4): 722.
[43] Matsumoto S, Yamaguchi S, Wada A, Matsui T, Ikeda M, Hamachi I. Chem. Commun., 2008, (13): 1545.
[44] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30(30): 6048.
[45] Yagai S, Kitamura A. Chem. Soc. Rev., 2008, 37(8): 1520.
[46] Timko B P, Dvir T, Kohane D S. Adv. Mater., 2010, 22(44): 4925.
[47] McKinnon D D, Brown T E, Kyburz K A, Kiyotake E, Anseth K S. Biomacromolecules, 2014, 15(7): 2808.
[48] Yan B, Boyer J C, Habault D, Branda N R, Zhao Y. J. Am. Chem. Soc., 2012, 134(40): 16558.
[49] Liu G, Liu W, Dong C M. Polym. Chem., 2013, 4(12): 3431.
[50] Kaur G, Johnston P, Saito K. Polym. Chem., 2014, 5(7): 2171.
[51] Kloxin A M, Tibbitt M W, Kasko A M, Fairbairn J A, Anseth K S. Adv. Mater., 2010, 22(1): 61.
[52] Wong D Y, Griffin D R, Reed J, Kasko A M. Macromolecules, 2010, 43(6): 2824.
[53] Peng K, Tomatsu I, van den Broek B, Cui C, Korobko A V, van Noort J, Meijer A H, Spaink H P, Kros A. Soft Matter, 2011, 7(10): 4881.
[54] Griffin D R, Kasko A M. J. Am. Chem. Soc., 2012, 134(31): 13103.
[55] Ercole F, Thissen H, Tsang K, Evans R A, Forsythe J S. Macromolecules, 2012, 45(20): 8387.
[56] Hagen V, Dekowski B, Kotzur N, Lechler R, Wiesner B, Briand B, Beyermann M. Chem. Eur. J., 2008, 14(5): 1621.
[57] Azagarsamy M A, McKinnon D D, Alge D L, Anseth K S. ACS Macro Lett., 2014, 3(6): 515.
[58] Lee M S, Kim J C. J Appl. Polym. Sci., 2012, 124(5): 4339.
[59] Wells L A, Furukawa S, Sheardown H. Biomacromolecules, 2011, 12(4): 923.
[60] Yang K, Zeng M. New J. Chem., 2013, 37(4): 920.
[61] Suyama K, Tachi H. RSC Adv., 2015, 5(40): 31506.
[62] Sui X, Feng X, Hempenius M A, Vancso G J. J. Mater. Chem. B, 2013, 1(12): 1658.
[63] Ojima I. Accounts Chem. Res., 2008, 41(1): 108.
[64] Bauhuber S, Hozsa C, Breunig M, Göpferich A. Adv. Mater., 2009, 21(32/33): 3286.
[65] Aleksanian S, Wen Y, Chan N, Oh J K. RSC Adv., 2014, 4(8): 3713.
[66] Gyarmati B, Vajna B, Némethy Á, László K, Szilágyi A. Macromol. Biosci., 2013, 13(5): 633.
[67] Choh S Y, Cross D, Wang C. Biomacromolecules, 2011, 12(4): 1126.
[68] Li X, Wang Y, Chen J, Wang Y, Ma J, Wu G. ACS Appl. Mate. Inter., 2014, 6(5): 3640.
[69] Baldwin A D, Kiick K L. Bioconjugate Chem., 2011, 22(10): 1946.
[70] Shen B Q, Xu K, Liu L, Raab H, Bhakta S, Kenrick M, Parsons-Reponte K L, Tien J, Yu S-F, Mai E, Li D, Tibbitts J, Baudys J, Saad O M, Scales S J, McDonald P J, Hass P E, Eigenbrot C, Nguyen T, Solis W A, Fuji R N, Flagella K M, Patel D, Spencer S D, Khawli L A, Ebens A, Wong W L, Vandlen R, Kaur S, Sliwkowski M X, Scheller R H, Polakis P, Junutula J R. Nat. Biotechnol., 2012, 30(2): 184.
[71] Baldwin A D, Kiick K L. Polym. Chem., 2013, 4(1): 133.
[72] 曹玮(Cao W), 许华平(Xu H P). 化学通报(Chemistry), 2013,76(4): 291.
[73] Ma N, Li Y, Xu H, Wang Z, Zhang X. J. Am. Chem. Soc., 2010, 132(2): 442.
[74] Sun T B, Jin Y, Qi R, Peng S J, Fan B Z. Polym. Chem., 2013, 4(14): 4017.
[75] Sun T B, Jin Y, Qi R, Peng S J, Fan B Z. Macromol. Chem. Phys., 2013, 214(24): 2875.
[76] Fu Y, Chen J Y, Xu H P, Oosterwijck C V, Zhang X, Dehaen W, Smet M. Macromol. Rapid Commun., 2012, 33: 798.
[77] Wang L, Cao W, Yi Y, Xu H P. Langmuir, 2014, 30, 5628.
[78] Tan X X, Yang L L, Huang Z H, Yu Y, Wang Z Q, Zhang X. Polym. Chem., 2015, 6(5): 681.
[79] Cheng X F, Jin Y, Sun T B, Qi R, Fan B Z, Li H P. RSC Adv., 2015, 5(6): 4162.
[80] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30(30): 6048.
[81] Anderson S B, Lin C C, Kuntzler D V, Anseth K S. Biomaterials, 2011, 32(14): 3564.
[82] Sanyal A. Macromol. Chem. Phys., 2010, 211(13): 1417.
[83] Wei H L, Yang J, Chu H J, Yang Z, Ma C C, Yao K. J. Appl. Polym. Sci., 2011, 120(2): 974.
[84] Kislukhin A A, Higginson C J, Hong V P, Finn M G. J. Am. Chem. Soc., 2012, 134(14): 6491.
[85] Higginson C J, Kim S Y, Peláez-Fernández M, Fernández-Nieves A, Finn M G. J. Am. Chem. Soc., 2015, 137(15): 4984.
[86] Wang D, Liu T, Yin J, Liu S. Macromolecules, 2011, 44(7): 2282.
[87] Yao Y, Wang X, Tan T, Yang J. Soft Matter, 2011, 7(18): 7948.
[88] Ravaine V, Ancla C, Catargi B. J. Control. Release, 2008, 132(1): 2.
[89] Yang T, Ji R, Deng X X, Du F S, Li Z C. Soft Matter, 2014, 10(15): 2671.
[90] Cao W, Zhang X L, Miao X M, Yang Z M, Xu H P. Angew. Chem. Int. Ed., 2013, 125(24): 6353.
[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[5] 黎朝, 於麟, 郑震, 王新灵*. 具有规整结构和高强度的水凝胶的功能化[J]. 化学进展, 2017, 29(7): 706-719.
[6] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[7] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[8] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[9] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[10] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[11] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.
[12] 唐诗洋, 孙晓君, 林丽, 孙艳, 刘献斌. 单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用[J]. 化学进展, 2011, 23(9): 1973-1984.
[13] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.
[14] 邱媛 章继川 高长有. 用于肝细胞球形聚集体培养的生物材料*[J]. 化学进展, 2010, 22(09): 1826-1835.
[15] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.
阅读次数
全文


摘要

刺激响应降解型聚合物水凝胶