English
新闻公告
More
化学进展 DOI: 10.7536/PC120714 前一篇   后一篇

• 综述与评论 •

原子力显微镜在纳米生物材料研究中的应用

马梦佳1,2, 陈玉云2, 闫志强2, 丁剑1, 何丹农*1,2, 钟建*2   

  1. 1. 上海交通大学材料科学与工程学院 金属基复合材料国家重点实验室 上海 200240;
    2. 纳米技术及应用国家工程研究中心 上海 200241
  • 收稿日期:2012-07-01 修回日期:2012-08-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 何丹农, 钟建 E-mail:jianzhongpku@hotmail.com;hdnbill@sh163.net
  • 基金资助:

    国家自然科学基金项目(No.51203024)、上海市浦江人才计划项目(No.12PJ1430300)和国家高技术研究发展计划(863)基金(No. 2012AA030309)资助

Applications of Atomic Force Microscopy in Nanobiomaterials Research

Ma Mengjia1,2, Chen Yuyun2, Yan Zhiqiang2, Ding Jian1, He Dannong*1,2, Zhong Jian*2   

  1. 1. State Key Laboratory of Metal Matrix Composites (SKLMMC), College of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. National Engineering Research Center for Nanotechnology, Shanghai 200241, China
  • Received:2012-07-01 Revised:2012-08-01 Online:2013-01-24 Published:2012-12-27

在过去的20年里,原子力显微镜(AFM)在纳米生物材料领域有着广泛的应用。AFM可有力地揭示纳米生物材料的表面结构与力学性质,并且可作为纳米加工工具对其进行操作与处理。本文综述了AFM在纳米生物材料中的最新应用进展,包括纳米生物材料的成像与表征,力学性能测量和纳米加工。AFM可用来观察纳米生物材料的表面形貌并对其特征高度和表面粗糙度进行分析,还可对其动态过程进行原位观察。通过AFM相图还可得到有时候高度图无法获取的一些表面特征。AFM力曲线可用于测量针尖与纳米生物材料之间的黏附力及分子内外的相互作用力。AFM纳米压痕技术可用来测量材料的相关力学性质(弹力,杨氏模量,硬度,纳米断裂行为等)。此外,AFM也已经被探索用于精准、可控、可重复地加工纳米生物材料。总之,作为一个强大的纳米技术工具,AFM已成为纳米生物材料相关研究领域的一个理想的表面分析和表面加工工具。

In the past two decades, atomic force microscopy (AFM) has been widely used for studying nanobiomaterials related research. AFM is a powerful tool that can reveal the surface structure and mechanical properties of nanobiomaterials, and is also known as a nanofabrication tool to manipulate and process nanobiomaterials. The focus of this review is on the recent progress in the applications of AFM for nanobiomaterials, which mainly includes imaging, force measurements, and nanofabrication of nanobiomaterials. AFM can be used to image the topography of nanobiomaterials and analyze the feature height and surface roughness, image the dynamic process of nanobiomaterials related processes in situ. AFM phase imaging can be used to image some surface features of nanobiomaterials those AFM height imaging cannot detect. AFM force curves can be applied to measure the adhesion force between tip and nanobiomaterials, and measure the intermolecular and intramolecular forces of nanobiomaterials. AFM nanoindentation can be applied to measure the mechanical properties (elasticity, Young’s modulus, hardness, nanofracture behavior, etc) of nanobiomaterials. In addition, AFM has been explored to fabricate nanobiomaterials in a precise, controllable and reproducible fashion. In summary, as a prowerful nanotechnological tool, AFM has provided an ideal surface-analysis and surface-fabrication tool in the nanobiomaterials related research. Contents
1 Introduction
2 Components and principles of AFM
3 Imaging and characterization
3.1 Topographical imaging
3.2 Phase imaging
4 Mechanical properties measurements
4.1 Force measurements
4.2 Other mechanical properties measurements
5 Nanofabrication
6 Summary and outlook

中图分类号: 

()

[1] Binnig G, Quate C F, Gerber C. Phys. Rev. Lett., 1986, 56: 930-933
[2] 熊党生(Xiong D S). 生物材料与组织工程(Biomaterials and Tissue Engineering). 北京: 科学出版社(Beijing: Science Press), 2010. 170-218
[3] Zhong J. Integr. Biol., 2011, 3: 632-644
[4] Alessandrini A, Facci P. Meas. Sci. Technol., 2005, 16: 65-92
[5] Martin Y, Williams C C, Wickramasinghe H K. J. Appl. Phys., 1987, 61: 4723-4729
[6] Zhong Q, Inniss D, Kjoller K, Elings V B. Surf. Sci., 1993, 290: L688-L692
[7] Hansma P K, Cleveland J P, Radmacher M, Walters D A, Hillner P E, Bezanilla M, Fritz M, Vie D, Hansma H G, Prater C B, Massie J, Fukunaga L, Gurley J, Elings V. Appl. Phys. Lett., 1994, 64: 1738-1740
[8] Putman C A J, Werf K O V D, Grooth B G D, Hulst N F V, Greve J. Appl. Phys. Lett., 1994, 64: 2454-2456
[9] Meng F, Hlady V, Tresco P A. Biomaterials, 2012, 33: 1323-1335
[10] Voigt N V, Torring T, Rotaru A, Jacobsen M F, Ravnsbaek J B, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf K V. Nat. Nano., 2010, 5: 200-203
[11] Maune H T, Han S P, Barish R D, Bockrath M, Goddard W A Ⅲ, Rothemund P W K, Winfree E. Nat. Nano., 2010, 5: 61-66
[12] Li C, Adamcik J, Mezzenga R. Nat. Nano., 2012, 7: 421-427
[13] Ruan L P, Zhang H Y, Luo H L, Liu J P, Tang F S, Shi Y K, Zhao X J. Proc. Natl. Acad. Sci. USA, 2009, 106: 5105-5110
[14] Dutta N K, Choudhury N R, Truong M Y, Kim M, Elvin C M, Hill A J. Biomaterials, 2009, 30: 4868-4876
[15] Adamcik J, Jung J M, Flakowski J, De Los Rios P, Dietler G, Mezzenga R. Nat. Nano., 2010, 5: 423-428
[16] Costa R R, Custodio C A, Arias F J, Rodriguez-Cabello J C, Mano J F. Small, 2011, 7: 2640-2649
[17] Bhatt S, Pulpytel J, Ceccone G, Lisboa P, Rossi F, Kumar V, Arefi-Khonsari F. Langmuir, 2011, 27: 14570-14580
[18] Truong V K, Lapovok R, Estrin Y S, Rundell S, Wang J Y, Fluke C J, Crawford R J, Ivanova E P. Biomaterials, 2010, 31: 3674-3683
[19] Yang J, Mei Y, Hook A L, Taylor M, Urquhart A J, Bogatyrev S R, Langer R, Anderson D G, Davies M C, Alexander M R. Biomaterials, 2010, 31: 8827-8838
[20] Hu X, Park S H, Gil E S, Xia X X, Weiss A S, Kaplan D L. Biomaterials, 2011, 32: 8979-8989
[21] Parkinson C R, Shahzad A, Rees G D. J. Struct. Biol., 2010, 171: 298-302
[22] Chen P, Jiang L, Han D. Small, 2011, 7: 2825-2835
[23] Yang G C, Wong M K, Lin L E, Yip C M. Nanotechnology, 2011, 22(49): art. no. 494018
[24] Chen L, Liu M, Bai H, Chen P, Xia F, Han D, Jiang L. J. Am. Chem. Soc., 2009, 131: 10467-10472
[25] Paredes J I, Villar-Rodil S, Solís-Fernaández P, Martínez-Alonso A, Tascón J M D. Langmuir, 2009, 25: 5957-5968
[26] Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf M P, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, Park J, McEuen P L, Muller D A. Nature, 2011, 469: 389-392
[27] Liu H, Fu S, Zhu J Y, Li H, Zhan H. Enz. Microbial Tech., 2009, 45: 274-281
[28] Greving I, Cai M, Vollrath F, Schniepp H C. Biomacromolecules, 2012, 13: 676-682
[29] Mi L, Bernards M T, Cheng G, Yu Q, Jiang S. Biomaterials, 2010, 31: 2919-2925
[30] Neuman K C, Nagy A. Nat. Meth., 2008, 5: 491-505
[31] Kim M, Wang C C, Benedetti F, Rabbi M, Bennett V, Marszalek P E. Adv. Mater., 2011, 23: 5684-5688
[32] Rakshit S, Sivasankar S. Soft Matter, 2011, 7: 2348-2351
[33] Hu X, Wang X, Rnjak J, Weiss A S, Kaplan D L. Biomaterials, 2010, 31: 8121-8131
[34] Kloxin A M, Benton J A, Anseth K S. Biomaterials, 2010, 31: 1-8
[35] Ho S P, Kurylo M P, Fong T K, Lee S S J, Wagner H D, Ryder M I, Marshall G W. Biomaterials, 2010, 31: 6635-6646
[36] Sridharan I, Ma Y, Kim T, Kobak W, Rotmensch J, Wang R. Biomaterials, 2012, 33: 1520-1527
[37] Yan Y, Hu Z, Zhao X, Sun T, Dong S, Li X. Small, 2010, 6: 724-728
[38] Zhang F C, Zhang F, Su H N, Li H, Zhang Y, Hu J. ACS Nano, 2010, 4: 5791-5796
[39] Vicary J A, Miles M J. Nanotechnology, 2009, 20: art. no. 095302
[40] Chen Y S, Hong M Y, Huang G S. Nat. Nano., 2012, 7: 197-203
[41] Hook A L, Voelcker N H, Thissen H. Acta Biomater., 2009, 5: 2350-2370
[42] Narui Y, Salaita K S. Chem. Sci., 2012, 3: 794-799
[43] Rakickas T, Ericsson E M, Ruel , Liedberg B, Valiokas R. Small, 2011, 7: 2153-2157
[44] Li H, He Q, Wang X, Lu G, Liusman C, Li B, Boey F, Venkatraman S S, Zhang H. Small, 2011, 7: 226-229
[45] Fotiadis D, Hasler L, Müller D J, Stahlberg H, Kistler J, Engel A. J. Mol. Biol., 2000, 300: 779-789
[46] Zhong J, Yang C, Zheng W, Huang L, Hong Y, Wang L, Sha Y. Colloid. Surf. B: Biointerfaces, 2010, 77: 40-46
[47] Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H. Pflüg. Arch. Eur. J. Phy., 2008, 456: 211-225
[48] Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield A J. Nat. Nano., 2011, 6: 166-169
[49] Zhao B, Howard-Knight J P, Humphris A D L, Kailas L, Ratcliffe E C, Foster S J, Hobbs J K. Rev. Sci. Instrum., 2009, 80: art. no. 093707
[50] Carberry D M, Picco L, Dunton P G, Miles M J. Nanotechnology, 2009, 20: art. no. 434018
[51] Bhushan B. Scanning Probe Microscopy in Nanoscience and Nanotechnology. Nanoscience and Technology. 1st ed. Berlin: Springer, 2010. 395-423

[1] 查东东, 周文, 银鹏, 郭斌, 李本刚, 黄亚男. 热塑性淀粉力学性能的提升途径及作用机理[J]. 化学进展, 2019, 31(7): 1044-1055.
[2] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[3] 戴莹萍, 嵇正平, 王赪胤, 胡效亚, 汪国秀. 微悬臂生物传感器[J]. 化学进展, 2016, 28(5): 697-710.
[4] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[5] 宋利锋, 赵瑾, 袁晓燕. 多糖多肽水凝胶的增强研究[J]. 化学进展, 2014, 26(0203): 385-393.
[6] 赵巧玲, 马志*. 原子力显微镜在聚烯烃研究中的应用[J]. 化学进展, 2012, (10): 2011-2018.
[7] 吴聪孟, 王小强, 赵康, 曹美文, 徐海, 吕建仁. 原子力显微镜法研究方解石(104)面的生长及溶解[J]. 化学进展, 2011, 23(01): 107-124.
[8] 郭彦,高筱玲,赵健伟,田燕妮. 蛋白质分子的电学性质、结构与生物活性*[J]. 化学进展, 2008, 20(06): 951-956.