English
新闻公告
More
化学进展 2014, Vol. 26 Issue (0203): 366-374 DOI: 10.7536/PC130839 前一篇   后一篇

• 综述与评论 •

甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用

许利娜1, 马培培1, 陈强1,2,3, 林思聪1, 沈健*1,3   

  1. 1. 南京大学化学化工学院 南京 210093;
    2. 南京大学常州高新技术研究院 常州 213164;
    3. 江苏省生物医药协同创新中心 南京 210093
  • 收稿日期:2013-08-01 修回日期:2013-10-01 出版日期:2014-02-15 发布日期:2013-12-18
  • 通讯作者: 沈健,e-mail:shenj57@nju.edu.cn E-mail:shenj57@nju.edu.cn
  • 基金资助:

    国家高技术发展计划(863)项目(No.2006AA03Z445)和江苏省生物医药协同创新项目资助

Biological Application of Sulfobetaine Methacrylate Polymers

Xu Lina1, Ma Peipei1, Chen Qiang1,2,3, Lin Sicong1, Shen Jian*1,3   

  1. 1. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. High-Tech Research Institute of Nanjing University, Changzhou 213164, China;
    3. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210093, China
  • Received:2013-08-01 Revised:2013-10-01 Online:2014-02-15 Published:2013-12-18
  • Supported by:

    The work was supported by the National High Technology Research and Development Program of China(No.2006AA03Z445) and the Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

两性离子聚合物具有阴阳离子基团,能够高度水化,具有优异的生物相容性。甲基丙烯酰乙基磺基甜菜碱(SBMA)聚合物因其独特的两性离子链结构,具有抗蛋白质污染、抗细菌黏附及抗凝血等抗生物污染性能,这种特性使其在生物医学等相关领域得到越来越多的应用。本文介绍了其抗生物污染的水化理论,对甲基丙烯酰乙基磺基甜菜碱类聚合物的结构、性质、合成方法及表面构建方法等作了概述和分析,对其在人造器官材料、组织工程、生物分离、生物监测、温度敏感材料等方面的应用作了重点介绍,并分析了目前应用存在的问题和潜在的应用前景。

Zwitterionic polymers have anion and cation groups simultaneously, which make them highly hydrated and render them unique biocompatibility. Because of their unique zwitterionic pendant-side chain structures, sulfobetaine methacrylate (SBMA) polymers present the excellent anti-biofouling properties, i.e. the resistance to protein adsorption, the inhibition of bacterial and blood coagulation, which make them increasingly applied in a wide range of biological and medical related fields recently. The hydration theory, one of the widely accepted antifouling mechanisms, is briefly introduced. In this article, recent progress in the properties, synthesis methods and surface construction methods is reviewed, the applications of SBMA polymers in the materials for artificial organs, tissue engineering, biological separation, bio-monitoring system and temperature-sensitive materials are summarized. In addition, SBMA polymers holding great potential for use in biomaterials and issues existed in these applications are also discussed.

Contents
1 Introduction
2 Mechanism investigation of biocompatibility
3 Preparation of SBMA polymers and methods of immobilization of SBMA polymers onto the materials
4 Application of SBMA polymers
4.1 Application of SBMA polymers in the materials for artificial organs
4.2 Application of SBMA polymers in the tissue engineering
4.3 Application of SBMA polymers in the biological separation
4.4 Application of SBMA polymers in the bio-monitoring system
4.5 PSBMA used for temperature-sensitive materials
4.6 Others
5 Conclusion and perspective

中图分类号: 

()

[1] Sun T L, Qing G Y, Su B L, Jiang L. Chem. Soc. Rev., 2011, 40: 2909.
[2] Jiang S, Cao Z. Adv. Mater., 2010, 22(9): 920.
[3] Salamone J C, Volksen W, lsrael S C, Olson A P, Raia D C. Polymer, 1977, 18: 1058.
[4] Cardoso J, Manero O. J. Polym. Sci., Part B: Polym. Phys., 1991, 29: 639.
[5] Lee W F, Tsai C C. Polymer, 1995, 36: 357.
[6] Williams D F, Biomaterials, 2008, 29: 2941.
[7] 林思聪(Ling S C). 高分子通报(Polym. Bull.), 1998, 1(1): 1.
[8] 何淑漫(He S M), 周健(Zhou J). 化学进展(Progress in Chemistry), 2010, 22(4): 760.
[9] Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. J. Biomed. Mater. Res., 1998, 39: 323.
[10] Tanaka M, Mochizuki A. J. Biomater. Sci. Polym. Ed., 2010, 21: 1849.
[11] Suzawa T, Shirahama H. Adv. Colloid. Interface. Sci., 1991, 35: 139.
[12] Chen H, Yuan L, Song W, Wu Z K, Li Dan. Prog. Polym. Sci., 2008, 33: 1059.
[13] Wang Y X, Robertson L J, Spillman Jr B W, Claus O R. Pharm. Res., 2004, 21: 1362.
[14] Chen M, Briscoe W H, Armes S P, Klein J. Science, 2009, 323: 1698.
[15] Fang F, Igal S. Biophys. J., 2001, 80: 2568.
[16] Kitano H, Kawasaki A, Kawasaki H, Morokoshi S. J. Colloid Interf. Sci., 2005, 282: 340.
[17] Wei J H, Yoshinari M, Takemoto S, Hattori M, Kawada E, Liu B L, Oda Y. J. Biomed. Mater. Res. B, 2007, 81: 66.
[18] Estephan Z G, Schlenoff P S, Schlenoff J B. Langmuir, 2011, 27: 6794.
[19] 何晓燕(He X Y), 周文瑞(Zhou W R), 徐晓君(Xu X J), 杨武(Yang W). 化学进展(Progress in Chemistry), 2013, 25(6): 1023.
[20] Heath D E, Cooper S L. Acta Biomater., 2012, 8: 2899.
[21] 丁伟(Ding W), 毛程(Mao C), 韦兆水(Wei Z S), 李明(Li M), 于涛(Yu T), 曲广淼(Qu G M). 应用化学(Chinese Journal of Applied Chemistry), 2011, 28(5): 555.
[22] Bütün V. Polymer, 2003, 44: 7321.
[23] Zhao Y H, Wee K H, Bai R. ACS Appl. Mater. Inter., 2010, 2: 203.
[24] Zhang Z, Finlay J A, Wang L F, Gao Y, Callow J A, Callow M E, Jiang S Y. Langmuir, 2009, 25: 13516.
[25] Dai F Y, Liu W Q. Biomaterials, 2011, 32: 628.
[26] 刘红艳(Liu H Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11): 2187.
[27] Yuan B, Chen Q, Ding W Q, Liu P S, Wu S S, Lin S C, Shen J, Gai Y. ACS Appl. Mater. Interfaces, 2012, 4: 4031.
[28] Liu P S, Chen Q, Wu S S, Shen J, Lin S C. J. Membrane Sci., 2010, 350: 387.
[29] 马佳妮(Ma J N), 宫铭(Gong M), 杨珊(Yang S), 张世平(Zhang S P), 宫永宽(Gong Y K). 化学进展(Progress in Chemistry), 2008, 20(07/08): 1151.
[30] Chang Y, Chen W Y, Yandi W, Shi Y J, Chu W L, Liu Y L, Chu C W, Ruaan R C, Higuchi A. Biomacromolecules, 2007, 8: 122.
[31] Kuo W H, Wang M J, Chien H W, Wei T C, Lee C, Tsai W B. Biomacromolecules, 2011, 12: 4348.
[32] Ye S H, Johnson Jr A C, Woolley R J, Murata H, Gamble J L, Ishihara K, Wagner R W. Colloids Surf. B Biointerfaces, 2010, 79: 357.
[33] Kuang J H, Messersmith P B. Langmuir, 2012, 28: 7258.
[34] Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J S, Marshall V S, Jones J M. Science, 1998, 282: 1145.
[35] Shamblott M J, Axelman J, Wang S P, Bugg E M, Littlefield J W, Donovan P J, Blumenthal P D, Huggins G R, Gearhart J D. Proc. Natl. Acad. Sci. U. S. A., 1998, 95: 13726.
[36] Villa-Diaz L G, Brown S E, Liu Y, Ross A M, Lahann J, Parent J M, Krebsbach P H. Stem Cells, 2012, 30: 1174.
[37] Villa-Diaz G L, Nandivada H, Ding J, Nogueira-de-Souza C N, Krebsbach H P, O'Shea S K, Lahann J, Smith D G. Nat. Biotechnol., 2010, 28: 581.
[38] 刘红艳(Liu H Y), 周健(Zhou J). 化工进展(Chemical Industry and Engineering Progress), 2012, 24(11): 2187.
[39] Yang Y F, Li Y, Li Q L, Wan L S, Xu Z K. J. Membrane Sci., 2010, 362: 255.
[40] 杨更亮(Yang G L), 刘海燕(Liu H Y). 中国科学: 化学(Scientia Sinica Chimica), 2010, 40(6): 631.
[41] Gritti F, Guiochon G. J. Chromatogr. A, 2012, 1228: 2.
[42] Lin H, Ou J J, Zhang Z B, Dong J, Wu M H, Zou H F. Anal. Chem., 2012, 84: 2721.
[43] Wang X C, Ding K, Yang C M, Lin X C, Lü H X, Wu X P, Xie Z H. Electrophoresis, 2010, 31: 2997.
[44] Sanghavi B J, Mobin S M, Mathur P, Lahiri G K, Srivastava A K. Biosens. Bioelectron., 2013, 39: 124.
[45] Marguet M, Bonduelle C, Lecommandoux S. Chem. Soc. Rev., 2013, 42: 512.
[46] Qian T, Yu C F, Wu S S, Shen J. Biosens. Bioelectron., 2013, 50: 157.
[47] Karman S B, Diah S Z M, Gebeshuber I C. Sensors, 2012, 12: 14232.
[48] Angenendt P, Glökler J, Sobek J, Lehrach H, Cahill J D. J. Chromatogr. A, 2003, 1009: 97.
[49] Rebeski D E, Winger E M, Shin Y K, Lelenta M, Robinson M M, Varecka R, Crowther J R. J. Immunol. Methods, 1999, 226: 85.
[50] Qian T, Yu C F, Wu S S, Shen J. Colloids Surf., B, 2013, 112: 310.
[51] Seurynck-Servoss S L, White A M, Baird C L, Rodland K D, Zangar R C. Anal. Biochem., 2007, 371: 105.
[52 ] Nguyen T A, Baggerman J, Paulusse M J J, Zuilhof H, van Rijn C J M. Langmuir, 2012, 28: 604.
[53] 喻晓莉(Yu X L), 杨健(Yang J), 倪彦(Yan Y). 自动化技术与应用(Techniques of Automation & Applications), 2009, 28(2): 107.
[54] Sakai Y, Sadaoka Y, Matsuguchi M. Sens. Actuators B, 1996, 85: 35.
[55] Sakai Y, Matsuguchi M, Hurukawa T. Sens. Actuators B, 2000, 66: 135.
[56] Lee M H, Rhee H W, Gong M S. Sens. Actuators B, 2001, 73: 124.
[57] Lee C W, Rhee H W, Gong M S. Synth. Met., 1999, 106: 177.
[58] Su P G, Uen C L. Sens. Actuators B, 2005, 107: 317.
[59] Li Y, Yang M J. Sens. Actuators B, 2002, 87: 184.
[60] Han D S, Gong M S. Sens. Actuators B, 2010, 145: 254.
[61] Han D S, Gong M S. Macromol. Res., 2010, 18: 260.
[62] Chang Y, Yandi W, Chen W Y, Shih Y J, Yang C C, Chang Y, Ling Q D, Higuchi A. Biomacromolecules, 2010, 11: 1101.
[63] Polzer F, Heigl J, Schneider C, Ballauff M, Borisov V O. Macromolecules, 2011, 44: 1654.
[64] Costerton J W, Cheng K J, Geesey G G, Ladd T I, Nickel J C, Dasgupta M, Marrie I T. Annu. Rev. Microbiol., 1987, 41: 435.
[65] Cheng G, Zhang Z, Chen S, Bryers J D, Jiang S Y. Biomaterials, 2007, 28: 4192.
[66] Bargman M J. Semin. Dialysis, 2012, 25: 668.
[67] Leblanc M, Ouimet D, Pichette V. Semin. Dialysis, 2001, 14: 50.
[68] Li M, Neoh K G, Xu L Q, Wang R, Kang E T, Lau T, Olszyna D P, Chiong E. Langmuir, 2012, 28: 16408.
[69] Zhang Z, Finlay J A, Wang L F, Gao Y, Callow J A, Callow M E, Jiang S Y. Langmuir, 2009, 25: 13516.

[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[3] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[4] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[5] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[6] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[7] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[8] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[9] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[10] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[11] 杜娟, 卢瑛, 王祎龙, 郭桂萍, 潘迎捷. 非对称纳米材料的性质及其应用[J]. 化学进展, 2014, 26(12): 2019-2026.
[12] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[13] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[14] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.
[15] 唐诗洋, 孙晓君, 林丽, 孙艳, 刘献斌. 单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用[J]. 化学进展, 2011, 23(9): 1973-1984.