English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1576-1590 DOI: 10.7536/PC190432 前一篇   后一篇

• •

调控细胞迁移和组织再生的生物材料研究

左新钢, 张昊岚, 周同, 高长有**()   

  1. 浙江大学教育部高分子合成与功能构造重点实验室 高分子科学与工程学系 杭州 310027
  • 收稿日期:2019-04-23 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 高长有
  • 基金资助:
    国家自然科学基金项目(51873188); 国家自然科学基金项目(21434006)

Biomaterials for Regulating Cell Migration and Tissue Regeneration

Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao**()   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2019-04-23 Online:2019-11-15 Published:2019-10-23
  • Contact: Changyou Gao
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(51873188); National Natural Science Foundation of China(21434006)

组织再生材料为细胞、组织的生长提供必要的物质基础,维持再生组织的形状和力学性能,并实现与周围组织的有机整合。其中,材料-细胞的相互作用是组织再生材料的核心问题。组织再生材料表界面的物理结构和化学性能可以直接影响细胞的黏附、铺展、增殖、迁移和分化等行为,进而影响组织修复和再生的效果。多数组织和器官具有立体结构,并具有更为精细的微结构。因此,三维组织再生材料体系的构建及其微结构调控是另外一个重要问题。本文结合本课题组近年的工作,综合国内外最新研究成果,重点介绍了生物材料表界面物理结构和理化性质对微粒吞噬、细胞黏附的影响、梯度材料对细胞黏附和定向迁移的作用、3D水凝胶中的细胞迁移行为及特点,以及用于皮肤和软骨组织修复与再生的植入材料,最后对生物材料在组织再生中的研究与应用进行了展望。

Regenerative biomaterials provide the necessary substances to support the growth of cells and tissues, maintain the shape and mechanical properties of regenerated tissues, and promote the integration with surrounding tissues. The surfaces and interfaces of biomaterials interact directly with cells and tissues, and thus significantly influencing on many cellular behaviors such as adhesion, spreading, proliferation, migration and differentiation as well as the outcomes of tissue repair and regeneration. Moreover, most tissues and organs possess a 3 dimensional shape with specific microstructures. Therefore, the construction of regenerative biomaterials with a 3 D shape and control over their microstructures are key issues as well. In this review, the recent works on the factors affecting cellular uptake of colloidal particles and cell adhesion are introduced. The adhesion and directional migration of cells mediated by gradient biomaterials are summarized. The latest works on migration of cells into 3 D hydrogels are reviewed. The implantable biomaterials with 3D microstructures for skin and cartilage repair and regeneration are also introduced. Finally, the application and perspectives of biomaterials in tissue regenerative are discussed.

()
图1 (a)PAH-Py微胶囊的制备和表面1D-NT的形成过程,(b)PAH、Py-CHO和PAH-Py的化学结构[39]
Fig. 1 (a) Schematic illustration of PAH-Py microcapsule fabrication and 1D-NT protrusion, and(b) Chemical structures of PAH, Py-CHO, and PAH-Py [39]
图2 (a)卟啉微粒(MP)和表面具有纳米粒子的卟啉微粒(MP-NP)的制备示意图;(b)PAH-g-Por的形成和分解过程化学反应机理。(c~h)PAH-g-Por微粒表面形成的纳米颗粒凸起的代表性SEM图;在pH=1 盐酸中孵育不同时间后逐渐变成刺状纳米凸起。(c)0 min,(d)10 min,(e)30 min,(f)1 h,(g)3 h和(h)6 h。(c~h)中的标尺为1 μm[38]
Fig. 2 Schematic illustrations of(a) preparation of porphyrin micro-nano particles(MP-NPs) with nano-protrudent surface and the counterpart micro-particles(MPs), and(b) chemical reaction mechanism of formation and decomposition of PAH-g-Por.(c~h) Representative SEM images show the process of nanoparticles protruding on the surface of PAH-g-Por microparticles and the gradual turning into nano-spikes after being incubated in pH 1 HCl for 0 min(c), 10 min(d), 30 min(e), 1 h(f), 3 h(g), and 6 h(h), respectively. Scale bar in(c~h) is 1 μm[38]
图3 在不对称微粒表面,分步接种成纤维(Fibroblasts)和内皮细胞(endothelial cells)得到不对接结构细胞微粒[44]
Fig. 3 Stepwise seeding of fibroblasts and endothelial cells to obtain the anisotropic cell microspheres[44]
图4 通过点击化学在聚酯条带表面修饰CQAASIKVAV多肽,促进神经细胞的取向、迁移和轴突生长[18]
Fig. 4 Fabrication process of a CQAASIKVAV peptide-modified P(LLA-MTMC) film with stripe micropatterns, which promote the alignment and directional migration of Schwann cells as well as the neurite outgrowth of PC12 cells[18]
图5 具有温度开关性能的钛纳米管对包埋的S1P具有温度依赖的释放性能[58]
Fig. 5 Titanium nanotubes modified with thermal responsive polymers for stimuli-triggering release of loaded S1P[58]
图6 (a)在聚乙二醇阻黏层上形成的VAPG梯度表面。(b)相对于成纤维细胞,VAPG的密度梯度可对平滑肌细胞进行选择黏附并调控其定向迁移[19]
Fig. 6 (a) A density gradient of VAPG peptides generated on the uniform PEG layer.(b) Influence of the VAPG density gradient on selective adhesion and migration of SMCs over FIBs [19]
图7 PHEMA/YIGSR互补梯度的形成及其对内皮细胞特异性的诱导迁移作用[71]
Fig. 7 Formation of PHEMA/YIGSR complementary gradient and induced migration of endothelial cells[71]
图8 相对于成纤维细胞,KHI/PDMAPS互补梯度表面特异性促进血旺细胞黏附和定向迁移(a);(b)KHI/PDMAPS互补梯度其制备过程示意图[72]
Fig. 8 (a) Formation of PDMAPS/KHIFSDDSSEK complementary gradient and its induced migration to Schwann cells(SCs) over fibroblasts(FIBs),(b) Schematic illustration to show the fabrication of the complementary density gradient of KHI peptides and PDMAPS, whose densities are controlled by the precursory immobilized -N3 and -C(CH3)2Br derived from BCS and BES, respectively[72]
图9 (a)三维细胞迁移模型。(b)左边为Transwell,右边为负载胶原-壳聚糖支架的Transwell[75]
Fig. 9 (a) Schematic illustration to show the model of 3D cell migration.(b)(left) the Transwell mold, and(right) the Transwell mold loaded with an actual collagen-chitosan scaffold[75]
图10 MMP交联的细胞响应性MA-HA水凝胶的合成示意图,以及平滑肌细胞在U937细胞的诱导作用下向水凝胶中的迁移行为[76]
Fig. 10 Schematic illustrations of synthesis of MMP SP-crosslinked and cell-responsive MA-HA hydrogel, into which the migration behavior of SMCs is mediated by the cocultured U937 cells on the bottom well[76]
图11 3D打印微孔道结构中血管生成示意图,以及内皮细胞在水凝胶中的定向迁移行为[77]
Fig. 11 Schematic illustrations of angiogenic sprouting from 3D-printed microchannels and directed migration behaviors of endothelial cells in hydrogels[77]
图12 (a) PLGA径向孔支架制备示意图。(b, c) PLGA径向取向孔支架示意图和宏观图片。(d) PLGA径向取向孔支架原位促进组织软骨和软骨下骨再生示意图[95]
Fig. 12 Schematic illustration to show the preparation of(a,b,c) poly(lactide-co-glycolide) scaffold(O-PLGA) with radially oriented pores through unidirectional cooling.(d) O-PLGA scaffold used for regeneration of an osteochondral defect in a rabbit model[95]
[1]
Monticone S, D’Ascenzo F, Moretti C, Williams T A, Veglio F, Gaita F, Mulatero P . Lancet Diabetes & Endocrinology, 2018,6(1):41. https://www.ncbi.nlm.nih.gov/pubmed/29129575

doi: 10.1016/S2213-8587(17)30319-4     URL     pmid: 29129575
[2]
Kargozar S, Baino F, Hamzehlou S, Hill R G, Mozafari M . Trends in Biotechnology, 2018,36(4):430. https://www.ncbi.nlm.nih.gov/pubmed/29397989

doi: 10.1016/j.tibtech.2017.12.003     URL     pmid: 29397989
[3]
He X S, Guo Z Y, Zhao Q, Ju W Q, Wang D P, Wu L W, Yang L, Ji F, Tang Y H, Zhang Z H, Huang S Z, Wang H L, Zhu Z B, Liu K P, Zhu Y L, Gao Y F, Xiong W, Han M, Liao B, Chen M G, Ma Y, Zhu X F, Huang W Q, Cai C J, Guan X D, Li X C, Huang J F . American Journal of Transplantation, 2018,18(3):737. https://www.ncbi.nlm.nih.gov/pubmed/29127685

doi: 10.1111/ajt.14583     URL     pmid: 29127685
[4]
Fishman J A . American Journal of Transplantation, 2017,17(4):856. https://www.ncbi.nlm.nih.gov/pubmed/28117944

doi: 10.1111/ajt.14208     URL     pmid: 28117944
[5]
Lelubre C, Vincent J L . Nature Reviews Nephrology, 2018,14(7):417. https://www.ncbi.nlm.nih.gov/pubmed/29691495

doi: 10.1038/s41581-018-0005-7     URL     pmid: 29691495
[6]
Nasralla D, Coussios C C, Mergental H, Akhtar M Z, Butler A J, Ceresa C D L, Chiocchia V, Dutton S J, Garcia-Valdecasas J C, Heaton N, Imber C, Jassem W, Jochmans I, Karani J, Knight S R, Kocabayoglu P, Malago M, Mirza D, Morris P J, Pallan A, Paul A, Pavel M, Perera M, Pirenne J, Ravikumar R, Russell L, Upponi S, Watson C J E, Weissenbacher A, Ploeg R J, Friend P J E . Nature, 2018,557(7703):50. https://www.ncbi.nlm.nih.gov/pubmed/29670285

doi: 10.1038/s41586-018-0047-9     URL     pmid: 29670285
[7]
langer R, Vacanti J P . Science, 1993,260(5110):920. https://www.ncbi.nlm.nih.gov/pubmed/8493529

doi: 10.1126/science.8493529     URL     pmid: 8493529
[8]
Khademhosseini A, Langer R . Naure Protocols, 2016,11(10):1775. https://www.ncbi.nlm.nih.gov/pubmed/27583639

doi: 10.1038/nprot.2016.123     URL     pmid: 27583639
[9]
Negrini N C, Bonnetier M, Giatsidis G, Orgill D P, Fare S, Marelli B . Acta Biomaterialia, 2019,87:61. https://www.ncbi.nlm.nih.gov/pubmed/30654214

doi: 10.1016/j.actbio.2019.01.018     URL     pmid: 30654214
[10]
Iandolo D, Pennacchio F A, Mollo V, Rossi D, Dannhauser D, Cui B X, Owens R M, Santoro F . Advanced Biosystems, 2019,3(2):1800103. http://doi.wiley.com/10.1002/adbi.v3.2

doi: 10.1002/adbi.v3.2     URL    
[11]
Ermis M, Antmen E, Hasirci V . Bioactive Materials, 2018,3(3):355. https://www.ncbi.nlm.nih.gov/pubmed/29988483

doi: 10.1016/j.bioactmat.2018.05.005     URL     pmid: 29988483
[12]
Lin J X, Zhou W Y, Han S, Bunpetch V, Zhao K, Liu C Z, Yin Z, Ouyang H W . Acta Biomaterialia, 2018,70:1. https://www.ncbi.nlm.nih.gov/pubmed/29355716

doi: 10.1016/j.actbio.2018.01.012     URL     pmid: 29355716
[13]
Dehghani F, Annabi N . Current Opinion in Biotechnology, 2011,22(5):661. 7b14557e-91e0-4be0-9a2f-114b773fe9a2http://www.sciencedirect.com/science/article/pii/S095816691100067X

doi: 10.1016/j.copbio.2011.04.005     URL    
[14]
Trappmann B, Gautrot J E, Connelly J T, Strange D G T, Li Y, Oyen M L, Stuart M A C, Boehm H, Li B, Vogel V, Spatz J P, Watt F M, Huck W T S . Nature Materials, 2012,11(7):642. d832a504-c609-4666-b854-fcc0aa31fa86http://dx.doi.org/10.1038/NMAT3339

doi: 10.1038/NMAT3339     URL    
[15]
Engler A J, Sen S, Sweeney H L . Cell, 2006,126(4):677. https://www.ncbi.nlm.nih.gov/pubmed/16923388

doi: 10.1016/j.cell.2006.06.044     URL     pmid: 16923388
[16]
Eldar-Boock A, Blau R, Ryppa C . Journal of Drug Targeting, 2017,25(9/10):829. https://www.ncbi.nlm.nih.gov/pubmed/28737432

doi: 10.1080/1061186X.2017.1358727     URL     pmid: 28737432
[17]
Xing D M, Ma L, Gao C Y . Journal of Bioactive and Compatible Polymers, 2017,32(4):382. http://journals.sagepub.com/doi/10.1177/0883911516684654

doi: 10.1177/0883911516684654     URL    
[18]
Zhang D T, Wu S, Feng J Y, Duan Y Y, Xing D M, Gao C Y . Acta Biomaterialia, 2018,74:143. https://www.ncbi.nlm.nih.gov/pubmed/29768188

doi: 10.1016/j.actbio.2018.05.018     URL     pmid: 29768188
[19]
Yu S, Zuo X G, Shen T, Duan Y Y, Mao Z W, Gao C Y . Acta Biomaterialia, 2018,72:70. https://www.ncbi.nlm.nih.gov/pubmed/29635070

doi: 10.1016/j.actbio.2018.04.005     URL     pmid: 29635070
[20]
Liang S, Yu S, Gao C Y . Colloids and Surfaces B: Biointerfaces, 2016,145:309. https://www.ncbi.nlm.nih.gov/pubmed/27209383

doi: 10.1016/j.colsurfb.2016.05.005     URL     pmid: 27209383
[21]
Gentilini C, Dong Y X, May J R, Goldoni S, Clarke D E, Lee B H, Pashuck E T, Stevens M M . Advanced Healthcare Materials, 2012,1(3):308. https://www.ncbi.nlm.nih.gov/pubmed/23184745

doi: 10.1002/adhm.201200036     URL     pmid: 23184745
[22]
Ridley A J, Schwartz M A, Burridge K . Science, 2003,302(5651):1704. https://www.ncbi.nlm.nih.gov/pubmed/14657486

doi: 10.1126/science.1092053     URL     pmid: 14657486
[23]
Clarke J . Current Biology Cb, 2006,16(9):337.
[24]
Yamaguchi H, Wyckoff J, Condeelis J . Current Opinion in Cell Biology, 2005,17(5):559. https://www.ncbi.nlm.nih.gov/pubmed/16098726

doi: 10.1016/j.ceb.2005.08.002     URL     pmid: 16098726
[25]
Horwitz R . Current Biology, 2003,13(19):756.
[26]
Redd M J . Cell Motility and the Cytoskeleton, 2006,63(7):415. https://www.ncbi.nlm.nih.gov/pubmed/16671106

doi: 10.1002/cm.20133     URL     pmid: 16671106
[27]
Cara D C . Journal of Immunology, 2001,167(11):6552. https://www.ncbi.nlm.nih.gov/pubmed/11714824

doi: 10.4049/jimmunol.167.11.6552     URL     pmid: 11714824
[28]
Ashton R S, Banerjee A, Punyani S, Schaffer D V, Kane R S . Biomaterials, 2007,28(36):5518. be0b22ec-015b-44f6-aa3f-dda497ba892fhttp://www.sciencedirect.com/science/article/pii/S0142961207007041

doi: 10.1016/j.biomaterials.2007.08.038     URL    
[29]
Lutolf M P, Hubbell J A . Nature Biotechnology, 2005,23(1):47. https://www.ncbi.nlm.nih.gov/pubmed/15637621

doi: 10.1038/nbt1055     URL     pmid: 15637621
[30]
Even-Ram S, Yamada K M . Current Opinion in Cell Biology, 2005,17(5):524. https://www.ncbi.nlm.nih.gov/pubmed/16112853

doi: 10.1016/j.ceb.2005.08.015     URL     pmid: 16112853
[31]
Lees J G, Gorgani N N, Ammit A J, McCluskey A, Robinson P J, O’Neill G M . Biochimica Et Biophysica Acta-Molecular Cell Research, 2015,1853(3):611. https://www.ncbi.nlm.nih.gov/pubmed/25498249

doi: 10.1016/j.bbamcr.2014.12.008     URL     pmid: 25498249
[32]
Yang J Z, Zhang Y S, Yue K, Khademhosseini A . Acta Biomaterialia, 2017,57:1. https://www.ncbi.nlm.nih.gov/pubmed/28088667

doi: 10.1016/j.actbio.2017.01.036     URL     pmid: 28088667
[33]
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X B, Li S, Deng Y, He N Y . Bone Research, 2017,5:17014. https://www.ncbi.nlm.nih.gov/pubmed/28584674

doi: 10.1038/boneres.2017.14     URL     pmid: 28584674
[34]
Peppas N A, Khademhosseini A . Nature, 2016,540:335. https://www.ncbi.nlm.nih.gov/pubmed/27974790

doi: 10.1038/540335a     URL     pmid: 27974790
[35]
陈绍军(Chen S J), 叶旋(Ye X), 钟燕辉(Zhong Y H) . 广东化工(Guangdong Chem. Ind.), 2018,45:123.
[36]
Zhang X O, Lü Y, Mao H . Chin. J. Tissue Eng. Res., 2018,22:294.
[37]
王秉(Wang B) . 浙江大学博士学位论文(Doctorial Dissertation of Zhejiang University), 2012.
[38]
Zhang W B, Li H Y, Qin Y, Gao C Y . Mater. Horiz., 2017,4(6):1135. http://xlink.rsc.org/?DOI=C7MH00420F

doi: 10.1039/C7MH00420F     URL    
[39]
Wang Z P, Möhwald H, Gao C Y . ACS Nano, 2011,5(5):3930. https://www.ncbi.nlm.nih.gov/pubmed/21480638

doi: 10.1021/nn200413d     URL     pmid: 21480638
[40]
Wang H, Yu W, Zhang W . Macromolecular Bioscience, 2014,14(12):1748. 05afe86e-8f6c-485c-ba25-c24aa0faba25http://dx.doi.org/10.1002/mabi.201400338

doi: 10.1002/mabi.201400338     URL    
[41]
Li H Y, Zhang W B, He N, Tong W J, Gao C Y . ACS Applied Materials & Interfaces, 2017,9(51):44369. https://www.ncbi.nlm.nih.gov/pubmed/29220165

doi: 10.1021/acsami.7b16362     URL     pmid: 29220165
[42]
Liu W J, Zhou X Y, Mao Z W, Yu D H, Wang B, Chang C Y . Soft Matter, 2012,8:9235. http://xlink.rsc.org/?DOI=c2sm26001h

doi: 10.1039/c2sm26001h     URL    
[43]
Lyden A, Lombardi L, Sire W, Li P, Simpson J C, Butler G, Lee G U . Nanoscale, 2017,9(41):15911. https://www.ncbi.nlm.nih.gov/pubmed/29019498

doi: 10.1039/c7nr04724j     URL     pmid: 29019498
[44]
Zheng H, Du W, Duan Y, Geng K, Deng J, Gao C . ACS Applied Materials & Interfaces, 2018,10(43):36776. https://www.ncbi.nlm.nih.gov/pubmed/30284813

doi: 10.1021/acsami.8b14884     URL     pmid: 30284813
[45]
Takeda I, Kawanabe M, Kanebo A . Precision Engineering, 2016,43:294. https://linkinghub.elsevier.com/retrieve/pii/S0141635915001543

doi: 10.1016/j.precisioneng.2015.08.009     URL    
[46]
Solar P, Kylian O, Marek A, Vandrovcova M, Bacakova L, Hanus J, Vyskocil J, Slavinska D, Biederman H . Applied Surface Science, 2015,324:99. https://linkinghub.elsevier.com/retrieve/pii/S0169433214023216

doi: 10.1016/j.apsusc.2014.10.082     URL    
[47]
Zhu Y, Mao Z W, Shi H Y, Gao C Y . Science China-Chemistry, 2012,55(11):2419. 2a4989bd-9b4e-4575-8b6a-3dabb5969f9ehttp://chem.scichina.com:8081/sciBe//EN/abstract/abstract509158.shtml

doi: 10.1007/s11426-012-4540-y     URL    
[48]
Wu S, Du W, Duan Y Y, Zhang D T, Liu Y X, Wu B B, Zou X H, Ouyang H W, Gao C Y . Acta Biomaterialia, 2018,75:75. https://www.ncbi.nlm.nih.gov/pubmed/29857130

doi: 10.1016/j.actbio.2018.05.046     URL     pmid: 29857130
[49]
Zheng X W, Pan X, Pang Q, Shuai C, Ma L, Gao C Y . Journal of Materials Chemistry B, 2018,6(1):165. https://www.ncbi.nlm.nih.gov/pubmed/32254204

doi: 10.1039/c7tb02812a     URL     pmid: 32254204
[50]
Zhang H L, Wang D Y, Lin X, Politakos N, Tuninetti J S, Moya S E, Gao C Y . Science China-Chemistry, 2018,61(1):54. http://link.springer.com/10.1007/s11426-017-9143-y

doi: 10.1007/s11426-017-9143-y     URL    
[51]
Huang L L, Zhu L, Shi X W, Xia B, Liu Z Y, Zhu S, Yang Y F, Ma T, Cheng P Z, Luo K, Huang J H, Luo Z J . Acta Biomaterialia, 2018,68:223. https://www.ncbi.nlm.nih.gov/pubmed/29274478

doi: 10.1016/j.actbio.2017.12.010     URL     pmid: 29274478
[52]
Li Q, Xing D M, Ma L, Gao C Y . Materials Science & Engineering C-Materials for Biological Applications, 2017,73:562.
[53]
Wu J N, Cao L Y, Liu Y, Zheng A, Jiao D L, Zeng D L, Wang X, Kaplan D L, Jiang X Q . Acta Biomaterialia, 2019,11:8878.
[54]
Man Z T, Li T, Zhang L B, Yuan L, Wu C S, Li P, Sun S, Li W . Am. J. Transl. Res., 2018,10(8):2480. https://www.ncbi.nlm.nih.gov/pubmed/30210686

URL     pmid: 30210686
[55]
Zhang D T, Xu S J, Wu S, Gao C Y . Journal of Materials Chemistry B, 2018,6(8):1226. https://www.ncbi.nlm.nih.gov/pubmed/32254183

doi: 10.1039/c7tb03073h     URL     pmid: 32254183
[56]
Zhang K H, Zheng H H, Liang S, Gao C Y . Acta Biomaterialia, 2016,37:131. https://www.ncbi.nlm.nih.gov/pubmed/27063493

doi: 10.1016/j.actbio.2016.04.008     URL     pmid: 27063493
[57]
Li X R, Li M Y, Sun J, Zhuang Y, Shi J J, Guan D W, Chen Y Y, Dai J W . Small, 2016,12(36):5009. https://www.ncbi.nlm.nih.gov/pubmed/27442189

doi: 10.1002/smll.201601285     URL     pmid: 27442189
[58]
Wu S, Zhang D T, Bai J, Du W, Duan Y Y, Liu Y X, Zou X H, Ouyang H W, Gao C Y . ACS Applied Materials & Interfaces, 2019,11(1):1254. https://www.ncbi.nlm.nih.gov/pubmed/30525390

doi: 10.1021/acsami.8b17530     URL     pmid: 30525390
[59]
Chen W Z, Xu K, Tao B L, Dai L L, Yu Y L, Mu C Y, Shen X K, Hu Y, He Y, Cai K Y . Acta Biomaterialia, 2018,74:489. https://www.ncbi.nlm.nih.gov/pubmed/29702291

doi: 10.1016/j.actbio.2018.04.043     URL     pmid: 29702291
[60]
Tateshima S, Kaneko N, Yamada M, Duckwiler G, Vinuela F, Ogawa T . Society for Biomaterials, 2018,106A(4):1034.
[61]
Wu J D, Mao Z W, Gao C Y . Biomaterials, 2012,33:810. b2e2656c-04c2-4871-89f7-9339fc2b4b75http://dx.doi.org/10.1016/j.biomaterials.2011.10.022

doi: 10.1016/j.biomaterials.2011.10.022     URL    
[62]
Ren T C, Mao Z W, Guo J, Gao C Y . Langmuir, 2013,29(21):6386. https://www.ncbi.nlm.nih.gov/pubmed/23634666

doi: 10.1021/la4004609     URL     pmid: 23634666
[63]
Han L L, Mao Z W, Wu J D, Zhang Y Y, Gao C Y . Journal of the Royal Society, Interface, 2012,9(77):3455. https://www.ncbi.nlm.nih.gov/pubmed/22896570

doi: 10.1098/rsif.2012.0546     URL     pmid: 22896570
[64]
Ren T C, Ni Y L, Du W, Yu S, Mao Z W, Gao C Y . Adv. Mater. Interfaces, 2017,6:1500865.
[65]
Redd M J, Kelly G, Dunn G, Way M, Martin P . Cell Motility and the Cytoskeleton, 2006,63(7):415. https://www.ncbi.nlm.nih.gov/pubmed/16671106

doi: 10.1002/cm.20133     URL     pmid: 16671106
[66]
Xue P H, Liu W D, Gu Z Y, Chen X C, Nan J J, Zhang J H, Sun H C, Cui Z C, Yang B . ACS Applied Materials & Interfaces, 2019,11(1):1595. https://www.ncbi.nlm.nih.gov/pubmed/30516041

doi: 10.1021/acsami.8b16547     URL     pmid: 30516041
[67]
Orsi S, Guarnieri D, Capua A D, Netti P A . Acta Biomaterialia, 2012,8:3228. 4215caa1-5a13-4fd3-90c4-fb48c5286d28http://dx.doi.org/10.1016/j.actbio.2012.05.010

doi: 10.1016/j.actbio.2012.05.010     URL    
[68]
Wang B, Shi J, Wei J, Tu X L, Chen Y . Biofabrication, 2019,11:045003. https://www.ncbi.nlm.nih.gov/pubmed/31091518

doi: 10.1088/1758-5090/ab21b3     URL     pmid: 31091518
[69]
Xiao H L, Huang W L, Xiong K, Ruan S Q, Yuan C, Mo G, Tian R Y, Zhou S R, She R F, Ye P, Liu B, Deng J . International Journal of Nanomedicine, 2019,14:2011. https://www.ncbi.nlm.nih.gov/pubmed/30962685

doi: 10.2147/IJN.S191627     URL     pmid: 30962685
[70]
Cara D C, Kaur J, Forster M, McCafferty D M, Kubes P . Journal of Immunology, 2001,167(11):6552. https://www.ncbi.nlm.nih.gov/pubmed/11714824

doi: 10.4049/jimmunol.167.11.6552     URL     pmid: 11714824
[71]
Ren T C, Yu S, Mao Z W, Moya S E, Han L L, Gao C Y . Biomacromolecules, 2014,15(6):2256. 182c7d39-6e44-44be-90e2-636faddcb1dahttp://dx.doi.org/10.1021/bm500385n

doi: 10.1021/bm500385n     URL    
[72]
Ren T C, Yu S, Mao Z W, Gao C Y . Biomaterials, 2015,56:58. https://www.ncbi.nlm.nih.gov/pubmed/25934279

doi: 10.1016/j.biomaterials.2015.03.052     URL     pmid: 25934279
[73]
Liang S, Yu S, Zhou N, Deng J, Gao C Y . Acta Biomaterialia, 2017,56:161. https://www.ncbi.nlm.nih.gov/pubmed/27998813

doi: 10.1016/j.actbio.2016.12.032     URL     pmid: 27998813
[74]
Kim B J, Hannanta-anan P, Chau M, Kim Y S, Swartz M A, Wu M M . PLoS One, 2013,8(7):e68422. https://www.ncbi.nlm.nih.gov/pubmed/23869217

doi: 10.1371/journal.pone.0068422     URL     pmid: 23869217
[75]
Li X G, Dai Y K, Shen T, Gao C Y . Regenerative Biomaterials, 2017,4(3):139. https://www.ncbi.nlm.nih.gov/pubmed/28596912

doi: 10.1093/rb/rbx005     URL     pmid: 28596912
[76]
Yu S, Duan Y Y, Zuo X G, Chen X Y, Mao Z W, Gao C Y . Biomaterials, 2018,180:193. https://www.ncbi.nlm.nih.gov/pubmed/30048909

doi: 10.1016/j.biomaterials.2018.07.022     URL     pmid: 30048909
[77]
Song K H, Highley C B, Rouff A, Burdick J A . Advanced Functional Materials, 2018,28:1801331. http://doi.wiley.com/10.1002/adfm.v28.31

doi: 10.1002/adfm.v28.31     URL    
[78]
Qin X H, Wang X P, Rottmar M, Nelson B J, Maniura-Weber K . Advanced Materials, 2018,30:1705564. http://doi.wiley.com/10.1002/adma.v30.10

doi: 10.1002/adma.v30.10     URL    
[79]
Hermans M H E . Advances in Skin & Wound Care, 2019,32(3):1527.
[80]
Ma L, Gao C Y, Mao Z W, Zhou J, Shen J C, Hu X Q, Han C M . Biomaterials, 2003,24(26):4833. d417a524-6581-4aaf-9e7d-0581ac98ceb7http://www.sciencedirect.com/science/article/pii/S0142961203003740

doi: 10.1016/S0142-9612(03)00374-0     URL    
[81]
Shi Y C, Ma L, Zhou J, Mao Z W, Gao C Y . Polymers for Advanced Technologies, 2005,16(11/12):789. http://doi.wiley.com/10.1002/%28ISSN%291099-1581

doi: 10.1002/(ISSN)1099-1581     URL    
[82]
Ma L, Shi Y C, Chen Y X, Zhao H H, Gao C Y . Journal of Materials Science-Materials in Medicine, 2007,18(11):2185. bc17f033-648a-4b2b-9c3f-f488f0276e35http://www.springerlink.com/content/a6ut017256l7338w/

doi: 10.1007/s10856-007-3088-4     URL    
[83]
Guo R, Xu S J, Ma L, Huang A B, Gao C Y . Biomaterials, 2010,31(28):7308. https://www.ncbi.nlm.nih.gov/pubmed/20598366

doi: 10.1016/j.biomaterials.2010.06.013     URL     pmid: 20598366
[84]
Guo R, Xu S J, Ma L, Huang A B, Gao C Y . Biomaterials, 2011,32(4):1019. 4f77b2ef-98a3-43f1-ba5f-1e0c1ef008a9http://www.sciencedirect.com/science/article/pii/S0142961210011257

doi: 10.1016/j.biomaterials.2010.08.087     URL    
[85]
Liu X, Ma L, Liang J, Zhang B, Teng J Y, Gao C Y . Biomaterials, 2013,34(8):2038. 63862410-7642-4e2a-ac3c-604426b0951dhttp://dx.doi.org/10.1016/j.biomaterials.2012.11.062

doi: 10.1016/j.biomaterials.2012.11.062     URL    
[86]
Kolakshyapati P, Li X Y, Chen C Y, Zhang M X, Tan W Q, Ma L, Gao C Y . Scientific Reports, 2017,7(1):17630. https://www.ncbi.nlm.nih.gov/pubmed/29247230

doi: 10.1038/s41598-017-17967-x     URL     pmid: 29247230
[87]
Raftery R M, Woods B, Marques A L P, Moreira-Silva J, Silva T H, Cryan S A, Reis R L, O’Brien F J . Acta Biomaterialia, 2016,10(1):160.
[88]
Goldring S R, Goldring M B . Nature Reviews Rheumatology, 2016,12(11):632. https://www.ncbi.nlm.nih.gov/pubmed/27652499

doi: 10.1038/nrrheum.2016.148     URL     pmid: 27652499
[89]
Nukavarapu S P, Dorcemus D L . Biotechnology Advances, 2013,31(5):706. 30ff035c-63dd-496b-812d-be1db7204723http://dx.doi.org/10.1016/j.biotechadv.2012.11.004

doi: 10.1016/j.biotechadv.2012.11.004     URL    
[90]
Li B, Yang J Z, Ma L, Li F F, Tu Z Y, Gao C Y . Tissue Engineering Part A, 2014,20(1/2):1. https://www.liebertpub.com/doi/10.1089/ten.tea.2013.0065

doi: 10.1089/ten.tea.2013.0065     URL    
[91]
Wakitani S, Goto T, Pineda S J, Young R G, Mansour J M, Caplan A I . J. Bone Joint. Surg. Am., 1994,76:579. https://www.ncbi.nlm.nih.gov/pubmed/8150826

doi: 10.2106/00004623-199404000-00013     URL     pmid: 8150826
[92]
Cui L, Wu Y, Cen L, Zhou H, Yin S, Liu G, Cao Y L . Biomaterials, 2009,30(14):2683. ef1d2ae1-6840-4583-b56c-20de16e4355chttp://www.sciencedirect.com/science/article/pii/S0142961209000933

doi: 10.1016/j.biomaterials.2009.01.045     URL    
[93]
Chen H C, Chang Y H, Chuang C K, Lin C Y, Sung L Y, Wang Y H . Biomaterials, 2009,30(4):674. 5def88ac-d8bf-4edd-9e61-e72722219773http://www.sciencedirect.com/science/article/pii/S0142961208008090

doi: 10.1016/j.biomaterials.2008.10.017     URL    
[94]
Dai Y K, Jin K, Feng X, Ye J, Gao C Y . Materials Science & Engineering C-Materials for Biological Applications, 2019,94:938.
[95]
Dai Y K, Shen T, Ma L, Wang D, Gao C . Journal of Tissue Engineering and Regenerative Medicine, 2018,12(3):1647.
[96]
Tellado S F, Chiera S, Bonani W, PohP S P, Migliaresi C, Motta A, Balmayor E R, Griensven M V . Acta Biomaterialia, 2018,7:5359.
[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[5] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[6] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[9] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[10] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[11] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[12] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[13] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[14] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[15] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.