English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1799-1807 DOI: 10.7536/PC150636 前一篇   后一篇

• 综述与评论 •

基于共轭聚合物的核酸生物传感器的应用

马昀, 周妍, 杜文琦, 缪智辉, 祁争健*   

  1. 东南大学化学化工学院 南京 211189
  • 收稿日期:2015-06-01 修回日期:2015-08-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 祁争健 E-mail:qizhengjian@seu.edu.cn
  • 基金资助:
    江苏省科技成果转化专项基金(No.BA2014123)和国家重大科学仪器设备开发专项(No.2014YQ060773)资助

The Application of DNA Biosensor Based on Conjugated Polymers

Ma Yun, Zhou Yan, Du Wenqi, Miao Zhihui, Qi Zhengjian*   

  1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
  • Received:2015-06-01 Revised:2015-08-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the Jiangsu Province Transformation of Scientific and Technological Achievements Program (No. BA2014123) and the National Major Scientific Instruments and Equipment Development Projects(No. 2014YQ060773).
共轭聚合物的π电子体系及共轭离域结构,使其具有良好的发光性能。聚合物链可充当“分子导线”,能够成倍放大光学信号,从而有效提高检测灵敏度。而核酸适体(aptamer)在特异性、与靶物质亲合力、信号传导方面比其他识别元件具有更大的优势,因此共轭聚合物的核酸生物传感器在生物检测方面得到了迅速发展。本文主要总结了近年来共轭聚合物的核酸生物传感器在生物检测方面的应用,并进一步对该类型传感器的发展趋势作出了展望。
Conjugated polymers, with π electron systems and highly delocalized conjugated structures, exhibit excellent luminescence properties. The polymer chains can work as molecular wire, which will lead to the amplification of optical signals and thus improve the detecting sensitivity. Aptamer has advantages in specificity, affinity with targets and signal transmission, hence, nucleic acid biosensors based on conjugated polymers have witnessed a rapid development in bio-detection. The applications of nucleic acid biosensors based on conjugated polymers in recent years are summarized. Finally, an outlook of the developing trend for these sensors is given.

Contents
1 Introduction
2 The sensing mechanism of fluorescent sensor
3 FRET
3.1 Detection of complementary DNA
3.2 Real-time monitoring of DNA hybridization
3.3 Real-time monitoring of DNA structure
3.4 Detection of protein and the activity of enzyme
3.5 Detection of specific gene
4 Aggregation and conformation change
4.1 Detection of complementary DNA
4.2 Real-time monitoring of DNA hybridization
4.3 Real-time monitoring of DNA structure
4.4 Detection of enzyme
4.5 Detection of specific DNA sequence
4.6 Detection of metal ion
5 Superquenching
6 Conclusion

中图分类号: 

()
[1] Gaylord B S, Heeger A J, Bazan G C. Proc. Natl. Acad. Sci. U.S.A., 2002, 99(17): 10954.
[2] Liu Y, Ogawa K, Schanze K S. J. Photoch. Photobio. C, 2009, 10(4): 173.
[3] McQuade D T, Pullen A E, Swager T M. Chem. Rev., 2000, 100(7): 2537.
[4] Burrezo P M, Pelado B, Ortiz R P, De la Cruz P, Navarrete J T L, Langa F, Casado J. Chem.Eur. J., 2015, 21(4): 1713.
[5] Farcas A, Aubert P H, Mohanty J, Lazar A I, Cantin S, Nau W M. Eur. Polym. J., 2015, 62: 124.
[6] Farcas A, Resmerita A M, Aubert P H, Ghosh I, Cantin S, Nau W M. Macromol. Chem. Phys., 2015, 216(6): 662.
[7] Ghosh D, Chattopadhyay N. J. Lumin., 2015, 160: 223.
[8] Li P L, Di Stasio F, Eda G, Fenwick O, McDonnell S O, Anderson H L, Chhowalla M, Cacialli F. ChemPhysChem, 2015, 16(6): 1258.
[9] Bunka D H J, Stockley P G. Nat. Rev. Microbiol., 2006, 4(8): 588.
[10] Bigwood D W, Heller S R, Wolf W R, Schubert A, Holden J M. Anal. Chim. Acta, 1987, 200(1): 411.
[11] Gold L. Harvey lectures, 1995, 91: 47.
[12] Jayasena S D. Clin. Chem., 1999, 45(9): 1628.
[13] Klug S J, Famulok M. Mol. Biol. Rep., 1994, 20(2): 97.
[14] Liu X F, Fan Q L, Huang W. Biosens. Bioelectron., 2011, 26(5): 2154.
[15] Huang Y Q, Fan Q L, Zhang G W, Chen Y, Lu X M, Huang W. Polymer, 2006, 47(15): 5233.
[16] Li J, Huang Y Q, Qin W S, Liu X F, Huang W. Polymer Chemistry, 2011, 2(6): 1341.
[17] Lan M H, Liu W M, Wang Y, Ge J C, Wu J S, Zhang H Y, Chen J H, Zhang W J, Wang P F. ACS Appl. Mater. Interfaces, 2013, 5(6): 2283.
[18] 支俊格(Zhi J G), 徐秀玲(Xu X L), 申进波(Shen J B), 赵玮(Zhao W), 佟斌(Tong B), 董宇平(Dong Y P). 化学进展(Prog.Chem.), 2009, (04): 739.
[19] Liu R X, Tan Y, Zhang C L, Wu J T, Mei L, Jiang Y Y, Tan C Y. J. Mater. Chem. B, 2013, 1(10): 1402.
[20] 黄艳琴(Huang Y Q), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Prog.Chem.), 2008, (04): 574.
[21] 汪凌云(Wang L Y), 曹德榕(Cao D R). 化学进展(Prog.Chem.), 2010, (05): 905.
[22] Liu B, Wang S, Bazan G C, Mikhailovsky A. J. Am. Chem. Soc., 2003, 125(44): 13306.
[23] Hwang D H, Lee J D, Kang J M, Lee S, Lee C H, Jin S H. J. Mater. Chem., 2003, 13(7): 1540.
[24] Huang Y Q, Fan Q L, Lu X M, Fang C, Liu S J, Yu-Wen L H, Wang L H, Huang W. Journal of Polymer Science Part A-Polymer Chemistry, 2006, 44(19): 5778.
[25] Bumagin N A, Sukhomlinova L I, Luzikova E V, Tolstaya T P, Beletskaya I P. Tetrahedron. Lett., 1996, 37(6): 897.
[26] Liang Z, Cabarcos O M, Allara D L, Wang Q. Adv. Mater., 2004, 16(9/10): 823.
[27] Furukawa Y, Cha Y H, Noguchi T, Ohnishi T, Tasumi M. Journal of Molecular Structure, 2000, 521: 211.
[28] Sakaguchi T, Sato M, Hashimoto T. Polymer, 2013, 54(9): 2272.
[29] Herland A, Nilsson K P R, Olsson J D M, Hammarstrom P, Konradsson P, Inganas O. J. Am. Chem. Soc., 2005, 127(7): 2317.
[30] Nilsson K P R, Olsson J D M, Stabo-Eeg F, Lindgren M, Konradsson P, Inganas O. Macromolecules, 2005, 38(16): 6813.
[31] Ho H A, Boissinot M, Bergeron M G, Corbeil G, Dore K, Boudreau D, Leclerc M. Angew. Chem. Int. Ed., 2002, 41(9): 1548.
[32] Gaylord B S, Heeger A J, Bazan G C. J. Am. Chem. Soc., 2003, 125(4): 896.
[33] He F, Tang Y L, Yu M H, Wang S, Li Y L, Zhu D B. Adv. Funct. Mater., 2007, 17(6): 996.
[34] Yu M H, Tang Y L, He F, Wang S, Zheng D G, Li Y H, Zhu D B. Macromol. Rapid Commun., 2006, 27(20): 1739.
[35] Xing C F, Yu M H, Wang S, Shi Z Q, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28(3): 241.
[36] Yu M H, He F, Tang Y, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28(12): 1333.
[37] An L L, Tang Y L, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2006, 27(13): 993.
[38] Duan X R, Li Z P, He F, Wang S. J. Am. Chem. Soc., 2007, 129(14): 4154.
[39] Zhou R Y, Xu C, Dong J, Wang G J. Biosens. Bioelectron., 2015, 65: 103.
[40] Liu Z W, Wang H L, Cotlet M. Chem. Mater., 2014, 26(9): 2900.
[41] Wang B, Yang Q, Liu L B, Wang S. Colloid Surf. B-Biointerfaces, 2011, 85(1): 8.
[42] Pu K Y, Liu B. Adv. Funct. Mater., 2009, 19(9): 1371.
[43] Feng X L, Duan X R, Liu L B, An L L, Feng F D, Wang S. Langmuir, 2008, 24(21): 12138.
[44] Wang C, Tang Y L, Liu Y, Guo Y. Anal. Chem., 2014, 86(13): 6433.
[45] Wang C, Tang Y L, Guo Y. ACS Appl. Mater. Interfaces, 2014, 6(23): 21686.
[46] Lian S, Liu C H, Zhang X B, Wang H H, Li Z P. Biosens. Bioelectron., 2015, 66: 316.
[47] Wang J, Liu B. Chem. Commun., 2009, (17): 2284.
[48] Wang Y Y, Zhang Y, Liu B. Anal. Chem., 2010, 82(20): 8604.
[49] Wang Y Y, Liu B. Biosens. Bioelectron., 2009, 24(11): 3293.
[50] Wang Y Y, Liu B. Langmuir, 2009, 25(21): 12787.
[51] Huang Y Q, Yao X, Zhang R, Lang O Y, Jiang R C, Liu X F, Song C X, Zhang G W, Fan Q L, Wang L H, Huang W. ACS Appl. Mater. Interfaces, 2014, 6(21): 19144.
[52] An L L, Liu L B, Wang S. Biomacromolecules, 2009, 10(2): 454.
[53] Zhan R Y, Fang Z, Liu B. Anal. Chem., 2010, 82(4): 1326.
[54] Sommers C D, Keire D A. Anal. Chem., 2011, 83(18): 7102.
[55] Sommers C D, Mans D J, Mecker L C, Keire D A. Anal. Chem., 2011, 83(9): 3422.
[56] Sommers C D, Ye H P, Kolinski R E, Nasr M, Buhse L F, Al-Hakim A, Keire D A. Anal. Bioanal. Chem., 2011, 401(8): 2445.
[57] Lan M H, Wu J S, Liu W M, Zhang W J, Ge J C, Zhang H Y, Sun J Y, Zhao W W, Wang P F. J. Am. Chem. Soc., 2012, 134(15): 6685.
[58] Guo Y Q, Chen Y X, Wei Y L, Li H H, Dong C. Spectrochim. Acta, 2015, 136: 1635.
[59] Li C, Numata M, Takeuchi M, Shinkai S. Angew. Chem. Int. Ed., 2005, 44(39): 6371.
[60] Nilsson K P R, Herland A, Hammarstrom P, Inganas O. Biochemistrys, 2005, 44(10): 3718.
[61] Plante M P, Berube E, Bissonnette L, Bergeron M G, Leclerc M. ACS Appl. Mater. Interfaces, 2013, 5(11): 4544.
[62] Lan M H, Liu W M, Ge J C, Wu J S, Sun J Y, Zhang W J, Wang P F. Spectrochim. Acta, 2015, 136: 871.
[63] Guan H L, Zhou P, Zeng S, Zhou X L, Wang Y, He Z K. Talanta, 2009, 79(2): 153.
[64] Ma Y, Xia Y, Yan L Q, Wang F, Miao Z H, Cui M F, Yao H T, Qi Z J, Anal. Methods, 2015, 7: 5814.
[65] Liu M, Li B X, Cui X. Biosens. Bioelectron., 2013, 47: 26.
[66] Wang L H, Liu X F, Yang Q, Fan Q L, Song S P, Fan C H, Huang W. Biosens. Bioelectron., 2010, 25(7): 1838.
[67] Ren X S, He F, Xu Q H. Asian J. Chem., 2010, 5(5): 1094.
[68] Ho H A, Leclerc M. J. Am. Chem. Soc., 2004, 126(5): 1384.
[69] Jia Y M, Zuo X L, Lou X D, Miao M, Cheng Y, Min X H, Li X C, Xia F. Anal. Chem., 2015, 87(7):3890.
[70] Liu Z, Wang H L, Cotlet M. Chem. Commun., 2014, 50(77): 11311.
[71] Xing X J, Zhou Y, Liu X G, Tang H W, Pang D W. Analyst, 2013, 138(21): 6301.
[72] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, Wang S. Adv. Mater., 2007, 19(13): 1662.
[73] Qin C J, Wong W Y, Wang L X. Macromolecules, 2011, 44(3): 483.
[74] Fan C H, Wang S, Hong J W, Bazan G C, Plaxco K W, Heeger A J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(11): 6297.
[75] Jones R M, Lu L D, Helgeson R, Bergstedt T S, McBranch D W, Whitten D G. Proc. Natl. Acad. Sci. U.S.A., 2001, 98(26): 14769.
[76] Lu L D, Helgeson R, Jones R M, McBranch D, Whitten D. J. Am. Chem. Soc., 2002, 124(3): 483.
[77] Lu L D, Jones R M, McBranch D, Whitten D. Langmuir, 2002, 18(20): 7706.
[78] Kushon S A, Bradford K, Marin V, Suhrada C, Armitage B A, McBranch D, Whitten D. Langmuir, 2003, 19(16): 6456.
[79] Srinivas A R G, Peng H, Barker D, Travas-Sejdic J. Biosens. Bioelectron., 2012, 35(1): 498.
[80] Srinivas A R G, Barker D, Travas-Sejdic J. Int. J. Nanotechnol., 2014, 11(5/8): 645.
[1] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[2] 杜瑾, 廖睿, 张幸林, 孙会彬, 黄维. 电致荧光变色材料的主要分类及变色机理[J]. 化学进展, 2018, 30(2/3): 286-294.
[3] 卢晓梅, 李杰, 胡文博, 邓卫星, 范曲立, 黄维. 水溶性共轭聚合物分子刷的研究进展[J]. 化学进展, 2016, 28(4): 528-540.
[4] 孙鹏飞, 候焕知, 范曲立, 黄维. 水溶性含糖共轭聚合物的制备及应用[J]. 化学进展, 2016, 28(10): 1489-1500.
[5] 范霄, 李艳艳, 刘迎亚, 曹昌盛, 李海涛. 单分子荧光技术在端粒和端粒酶研究中的应用[J]. 化学进展, 2014, 26(12): 1987-1996.
[6] 任晓杰, 卢晓梅, 范曲立, 黄维. 共轭聚合物的双光子吸收性质及其在生物成像领域的应用[J]. 化学进展, 2013, 25(10): 1739-1750.
[7] 蔡小慧, 石琳, 刘兴奋*, 黄艳琴, 范曲立, 黄维*. 共轭聚合物的功能化及在生物/化学分析领域的应用[J]. 化学进展, 2013, 25(06): 975-989.
[8] 张力红, 于庆才, 万俊华*. 基于噻咯的聚合物给体光伏材料[J]. 化学进展, 2013, 25(05): 752-760.
[9] 张会京, 侯信* . 有机高分子/无机半导体杂化太阳能电池的发展现状与展望[J]. 化学进展, 2012, 24(11): 2106-2115.
[10] 刘治田, 胡钊, 沈陟, 胡双强, 王子兴, 戚欣. 含Silole共轭聚合物的光电性能[J]. 化学进展, 2012, 24(0203): 377-384.
[11] 杨群峰, 刘建云, 陈华萍, 王显祥, 黄乾明, 单志. 贵金属纳米团簇的制备及在生物检测中的应用[J]. 化学进展, 2011, 23(5): 880-892.
[12] 张敏, 吴玉清. 压力诱导溶液中蛋白质构象变化的谱学研究[J]. 化学进展, 2011, 23(10): 2003-2011.
[13] 朱春雷, 杨琼, 刘礼兵, 王树. 高灵敏共轭聚合物化学传感器[J]. 化学进展, 2011, 23(10): 1993-2002.
[14] 苗丽坤, 刘兴奋, 范曲立, 黄维. 基于荧光共轭聚合物的金属离子检测[J]. 化学进展, 2010, 22(12): 2338-2352.
[15] 吴崔晨 胡 佳 邹远 王 驰 刘 杰 杨朝勇. 核酸适体在生物医学中的应用*[J]. 化学进展, 2010, 22(08): 1518-1530.