English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 286-294 DOI: 10.7536/PC170729 前一篇   后一篇

• 综述 •

电致荧光变色材料的主要分类及变色机理

杜瑾1, 廖睿1, 张幸林1, 孙会彬1*, 黄维1,2   

  1. 1. 南京工业大学 江苏省柔性电子重点实验室 先进材料研究院 江苏先进生物与化学制造协同创新中心 南京 211816;
    2. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 南京 210023
  • 收稿日期:2017-07-17 修回日期:2017-11-05 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 孙会彬,iamhbsun@njtech.edu.cn E-mail:iamhbsun@njtech.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21504040)和江苏省高校自然科学基金项目(No.15KJB150012)资助

The Classification of Electrofluorochromism Materials and Color Change Mechanisms

Jin Du1, Rui Liao1, Xinglin Zhang1, Huibin Sun1*, Wei Huang1,2   

  1. 1. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China;
    2. Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2017-07-17 Revised:2017-11-05 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21504040) and the Natural Science Foundation of Jiangsu Higher Education Institutions(No. 15KJB150012).
电致荧光变色是指在外加电压作用下材料的发光颜色发生变化的现象,具体表现为荧光的开/关或颜色变换的切换过程。近几年因其在离子传感器、信息显示、生物分析以及光学成像和信息存储等领域的潜在应用,受到科研工作者的广泛关注。电致荧光变色材料可以将电化学信号转变为直接可见的视觉信号,所以也被认为是最有应用前景的智能材料之一。本文阐述了近年来电致荧光变色材料的主要研究进展,专注于介绍电致荧光变色材料的分类(包括双官能团分子、荧光团和聚合物)及其变色机理,并着重讨论了它们的结构特点以及特定的应用。同时提出这类材料具有高的发光对比度、快的响应速度、长期稳定性、多色变化的优点以及在有机光电领域的应用前景,最后概述了这一研究领域的未来发展方向。
Electrofluorochromism(EFC) refers to a phenomenon that luminescence color of materials can be tuned by the application of an extra electric field, of which the fluorescence is generally switched between ON/OFF or different colors under an electrical stimulus. These materials have received increasing attention because of their extensive applications in ion sensing, information display, bioanalysis, optical imaging, information storage and so on. It is rather remarkable that EFC materials are considered to be prospective smart materials because they can convert electrical signals to more intuitive visual signals. Herein recent research progress in electrofluorochromism field are reviewed, which mainly elaborates the main EFC materials including dyads, fluorophores and polymers(including conjugated polymers) and their emission-color changing mechanism. Structure features of those EFC materials and their functional realization principles in specific applications are highlighted. Those materials have high luminescence contrast, fast response rate, long term stability and exhibit multicolor emissions switching of fluorescence and a number of advantages and have found applications in organic optoelectronic devices field. At the end of the paper, a brief overview of the future directions of this research field is also presented.
Contents
1 Introduction
2 Electrofluorochromism mechanism
3 Classification of electrofluorochromism materials
3.1 Dyads
3.2 Electroswitchable fluorophores
3.3 Fluorescent conjugated polymers
4 Conclusion

中图分类号: 

()
[1] Wan X H, Xu C Y. Sci. China. Chem., 2017, 60:1.
[2] Ling Y, Xiang C L, Zhou G. J. Mater. Chem. C, 2017, 5:290.
[3] Park S I, Quan Y J, Kim S H, Kim H, Kim S, Chun D M, Lee C S, Taya M, Chu W S, Ahn S H. KSPE and Springer, 2016, 3:397.
[4] Al-Kutubi H, Zafarani H R, Rassaei L, Mathwig K. Eur. Polym. J., 2016, 83:478.
[5] Audebert P, Miomandre F. Chem. Sci., 2013, 4:575.
[6] Sun J, Chen Y N, Liang Z Q. Adv. Funct. Mater., 2016, 26:2783.
[7] Zhang Y M, Li W, Wang X, Yang B, Li M, Zhang S X. Chem. Commun., 2014, 50:1420.
[8] Nakamura K, Kanazawa K, Kobayashi N. Chem. Commun., 2011, 47:10064.
[9] Bill N L, Lim J M, Davis C M, Bahring S, Jeppesen J O, Kim D, Sessler J L. Chem. Commun., 2014, 50:6758.
[10] Thakur V K, Ding G Q, Ma J, Lee P S, Lu X H. Adv. Mater., 2012, 24:4071.
[11] Rosseinsky D R, Mortimer R J. Adv. Mater., 2001, 13:783.
[12] Lim H, Seo S, Pascal S, Bellier Q, Rigaut S, Park C, Shin H, Maury O, Andraud C, Kim E. Sci. Rep., 2016, 6:18867.
[13] Mortimer R J. Annu. Rev. Mater. Res., 2011, 41:241.
[14] Goulle V, Harriman A, Lehn J M. J. Chem. Soc. Chem. Commun., 1993, 12:1034.
[15] Swager T M. Acc. Chem. Res., 1998, 31:201.
[16] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107:1339.
[17] McQuade D T, Pullen A E, Swager T M. Chem. Rev., 2000, 100:2537.
[18] Zhou Q, Swager T M. J. Am. Chem. Soc.,1995,117:7017.
[19] Wang S, Gaylord B S, Bazan G C. J. Am. Chem. Soc., 2004, 126:5446.
[20] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120:5321.
[21] Wu J H, Liou G S. Adv. Funct. Mater., 2014, 24:6422.
[22] Kuo C P, Chang C L, Hu C W, Chuang C N, Ho K C, Leung M K. Appl. Mater. Interfaces, 2014, 6:17402.
[23] Yen H J, Liou G S. Chem. Commun., 2013, 49:9797.
[24] Miomandre F, Pansu R B, Audibert J F, Guerlin A, Mayer C R. Electro.Commun., 2012, 20:83.
[25] Martinez R, Ratera I, Tarraga A, Molina P, Veciana J. Chem. Commun., 2006, 36:3809.
[26] Zhang R L, Wang Z L, Wu Y S, Fu H B, Yao J N. Org Lett., 2008, 10:3065.
[27] Zhou Q, Audebert P, Clavier G, Méallet-Renault R, Miomandre F, Shaukat Z, Vu T T, Tang J. J. Phys. Chem. C, 2011, 115:21899.
[28] Seo S G, Kim Y, Zhou Q, Clavier G, Audebert P, Kim E K. Adv. Funct. Mater., 2012, 22:3556.
[29] Canevet D, Salle M, Zhang G X, Zhang D Q, Zhu D B. Chem. Commun., 2009, 17:2245.
[30] Salverda J M, Patil A V, Mizzon G, Kuznetsova S, Zauner G, Akkilic N, Canters G W, Davis J J, Heering H A, Aartsma T J. Angew. Chem. Int. Ed., 2010, 49:5776.
[31] Tanaka H, Shizu K, Miyazaki H, Adachi C. Chem. Commun., 2012, 48:11392.
[32] Yang X, Seo S G, Park C H, Kim E K. Macromolecules, 2014, 47:7043.
[33] Clavier G, Audebert P. Chem. Rev., 2010, 110:3299.
[34] Kim Y, Do J, Kim E, Clavier G, Galmiche L, Audebert P. Journal of Electroanalytical Chemistry, 2009, 632:201.
[35] Quinton C, Alain-Rizzo V, Dumas-Verdes C, Miomandre F, Audebert P. Electrochimica Acta, 2013, 110:693.
[36] Kawano K, Nagayoshi K, Yamaki T, Adachi C. Org. Electron., 2014, 15:1695.
[37] Benniston A C, Copley G, Elliott K J, Harringto R W, Clegg W. European Journal of Organic Chemistry, 2008, 16:2705.
[38] Illos R A, Shamir D, Shimon L J W, Zilbermann I, Bittner S. Tetrahedron Lett., 2006, 47:5543.
[39] Kierat R M, Thaler B M, Kramer R. Bioorg. Med. Chem. Lett., 2010, 20:1457.
[40] Beneduci A, Cospito S, La D M, Veltri L, Chidichimo G. Nat Commun, 2014, 5:3105.
[41] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burn P L, Holmes A B. Nature, 1990,347:539.
[42] Gesquiere A J, Park S J, Barbara P F. J. Phys. Chem. B, 2004, 108: 10301.
[43] Montilla F, Mallavia R. J. Phys. Chem. B, 2006, 110:25791.
[44] Yoo J, Kwon T, Sarwade B D, Kim Y, Kim E. Appl. Phys. Lett., 2007, 91:241107.
[45] Iwan A, Sek D. Prog. Poly. Sci., 2011, 36:1277.
[46] Montilla F, Pastor I, Mateo C R, Morallo E, Mallavia R. J. Phys. Chem. B, 2006, 110: 5914.
[47] Montilla F, Esquembre R, Gomez R, Blanco R, Segura J L.J. Phys. Chem. C, 2008, 112:16668.
[48] Ding G Q, Zhou H, Xu J W, Lu X H. Chem. Commun., 2014, 50:655.
[49] Kuo C P, Chang C L, Hu C W, Chuang C N, Ho K C, Leung M K. Appl. Mater. Interfaces, 2014, 6:17402.
[50] Ding G Q, Lin T T, Zhou R, Dong Y L, Xu J W, Lu X H.Chem. Eur. J., 2014, 20:13226.
[51] Beneduci A, Cospito S, Deda M L, Chidichimo G. Adv. Funct. Mater., 2015, 25:1240.
[52] Kuo C P, Leung M K. Phys. Chem. Chem. Phys., 2014, 16:79.
[53] Xiang C L, Wan H, Zhu M J, Chen Y J, Peng J, Zhou G. Appl. Mater. Interfaces, 2017, 9:8872.
[54] Seo S G, Pascal S, Park C, Shin K, Yang X, Maury O, Sarwade B D, Andraud C, Kim E K. Chem. Sci., 2014, 5:1538.
[55] Toal S J, Jones K A, Magde D, Trogler W C. J. Am. Chem. Soc., 2005, 127:11661.
[56] Zhu L Y, Wu W W, Zhu M Q, Han J J, Hurst J K, Li A D Q. J. Am. Chem. Soc., 2007, 129:3524.
[57] Lee Y, Park S, Han S W, Lim T G, Koh W G. Biosens. Bioelectron., 2012, 35:243.
[58] Kobayashi H, Choyke P L. Acc. Chem. Res., 2011, 44:83.
[59] Kim Y, Kim Y, Kim S, Kim E. ACS Nano, 2010, 4:5277.
[60] Koppelhuber A, Bimber O. Opt. Express., 2013, 21:4796.
[61] Sun H B, Liu S J, Lin W P, Zhang K Y, Lv W, Huang X, Huo F W, Yang H R, Jenkins G, Zhao Q, Huang W. Nat. Commun., 2014, 5:3601.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[10] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[11] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[12] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[13] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[14] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[15] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.