English
新闻公告
More
化学进展 DOI: 10.7536/PC120757 前一篇   后一篇

• 综述与评论 •

含巯基/二硫键聚合物生物材料

李春鸽1, 赵爽1, 李俊杰2, 尹玉姬*1   

  1. 1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072;
    2. 军事医学科学院组织工程研究中心 北京 100850
  • 收稿日期:2012-07-01 修回日期:2012-09-01 出版日期:2013-01-24 发布日期:2012-12-27
  • 通讯作者: 尹玉姬 E-mail:yinyuji@yahoo.com.cn
  • 基金资助:

    国家自然科学基金项目(No.51073116,30670572)资助

Polymeric Biomaterials Containing Thiol/Disulfide Bonds

Li Chunge1, Zhao Shuang1, Li junjie2, Yin Yuji*1   

  1. 1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072;
    2. Tissue Engineering Research Center, Academy of Military Medical Sciences, Beijing 100850, China
  • Received:2012-07-01 Revised:2012-09-01 Online:2013-01-24 Published:2012-12-27

含巯基/二硫键聚合物生物材料具有多种良好的性能,作为药物、基因等的释放载体在生物医学领域具有广泛的应用前景。随着基因工程和组织工程的发展,含巯基/二硫键聚合物生物材料的可生物降解性得到高度重视,而怎样改善其降解性能成为限制其应用的关键因素。由于二硫键在细胞外环境里保持稳定,在细胞溶质的还原环境中容易发生断裂,因此在制备新型基因、药物等释放载体上,二硫键充当了重要的角色,它的引入为聚合物生物材料的生物降解性能的设计与改善提供了一条重要的途径。本综述重点以聚合物水凝胶、聚合物微胶束、囊泡等为例,从巯基/烯的光聚合反应、Michael加成反应、氧化还原反应的角度,介绍了巯基/烯在聚合物中形成二硫键的不同途径的研究进展,并详细论述了基因载体、蛋白质载体、小分子药物载体三种还原敏感型材料的制备、表面修饰和改性的进展情况,进一步强调含巯基/二硫键聚合物生物材料的研究在生物医学领域应用的重要性。

Polymeric biomaterials which contain thiol/disulfide bonds with a variety of good characteristics have the strong potential to be used as release carriers for drugs and genes. With the development of genetic engineering and tissue engineering, biodegradability of these materials has drawn much more attention of researchers and become the key factor limiting their applications as biomaterials. Disulfide bond remains stable in the extracellular environment while broken in the cytosolic reducing environment. In terms with this property, it is frequently used in the preparation of the carrier materials for the drug and gene delivery systems. The introduction of disulfide bonds to the materials provides an effective way to design or improve the biodegradability. In this review, we focused on the research progress and test methods of the thiol/ene photopolymerization reaction, Michael addition reaction and the redox reaction taking the hydrogels, polymer micells and vesicles as the typical examples. Different methods about the formation of thiol/ene disulfide bonds in the polymer were also presented. And the preparation and surface modification of three kinds of reduction-sensitive materials, including gene carriers, drug delivery vectors and small molecule drug carriers, were discussed in detail. The importance of the research on the polymeric biomaterials which contains thiol/disulfide bonds in the field of biomedical applications has been further emphasized. Contents
1 Introduction
2 Photopolymerization polymers
3 Michael addition polymers
4 Reduction-sensitive polymers
4.1 Gene carriers
4.2 Protein vectors
4.3 Small molecule drug carriers
5 Prospects

中图分类号: 

()

[1] Teng D Y, Wu Z M, Zhang X G, Wang Y X, Zheng C, Wang Z, Li C X. Polymer, 2010, 51: 639-646
[2] Jin R, Teixeira L S M, Krouwels A, Dijkstra P J, van Blitterswijk C A, Karperien M, Feijen J. Acta Biomaterialia, 2010, 6: 1968-1977
[3] Pritchard C D, O’Shea T M, Siegwart D J, Calo E, Anderson D G, Reynolds F M, Thomas J A, Slotkin J R, Woodard E J, Langer R. Biomaterials, 2011, 32: 587-597
[4] Lin C, Zhao P, Li F, Guo F F, Li Z Q, Wen X J. Materials Science and Engineering C, 2010, 3: 1236-1244
[5] Deshmukh M, Singh Y, Gunaseelan S, Gao D Y, Stein S, Sinko P J. Biomaterials, 2010, 31: 6675-6684
[6] Theiler S, Mela P, Diamantouros S E, Jockenhoevel S, Keul H, Möller M. Biotechnology and Bioengineering, 2011, 108: 694-703
[7] Kohane D S, Langer R. Chemical Science, 2010, 1: 441-446
[8] Lim Y M, Gwon H J, Choi J H, Shin J, Nho Y C. Macromolecular Research, 2010, 1: 29-34
[9] Song M M, Song W J, Bi H, Wang J, Wu W L, Sun J, Yu M. Biomaterials, 2010, 31: 1509-1517
[10] Wang R, Chen W, Meng F H, Cheng R, Deng C, Feijen J, Zhong Z Y. Macromolecules, 2011, 44: 6009-6016
[11] Kang H C, Kang H J, Bae Y H. Biomaterials, 2011, 32: 1193-1203
[12] Hoyle C E, Bowman C N. Angewandte Chemie International Edition, 2010, 49: 1540-1573
[13] Schreck K M, Leung D, Bowman C N. Macromolecules, 2011, 44: 7520-7529
[14] Niu G G, Song L, Zhang H B, Cui X P, Kashima M, Yang Z, Cao H, Wang G J, Zheng Y D, Zhu S Q, Yang H. Polymer Engineering and Science, 2010, 50: 174-182
[15] Fairbanks B D, Schwartz M P, Halevi A E, Nuttelman C R, Bowman C N, Anseth K S. Advanced Materials, 2009, 21: 5005-5010
[16] Lomba M, Oriol L, Alcalá R, Sánchez C, Moros M, Grazú V, Serrano J L, de la Fuente J M. Macromolecular Bioscience, 2011, 11: 1505-1514
[17] Aimetti A A, Machen A J, Anseth K S. Biomaterials, 2009, 30: 6048-6054
[18] Miller J S, Shen C J, Legant W R, Baranski J D, Blakely B L, Chen C S. Biomaterials, 2010, 31: 3736-3743
[19] Fu Y, Xu K D, Zheng X X, Giacomin A J, Mix A W, Kao W J. Biomaterials, 2012, 33: 48-58
[20] Anderson S B, Lin C, Kuntzler D V, Anseth K S. Biomaterials, 2011, 32: 3564-3574
[21] Cramer N B, Couch C L, Schreck K M, Carioscia J A, Boulden J E, Stansbury J W, Bowman C N. Dental Materials, 2010, 26: 21-28
[22] Shah S S, Kim M, Cahill-Thompson K, Tae G, Revzin A. Soft Matter, 2011, 7: 3133-3140
[23] Bertin A, Schlaad H. Chem. Mater., 2009, 21: 5698-5700
[24] Jo S, Kim D, Woo J, Yoon G, Park Y D, Tae G, Noh I. Macromolecular Research, 2011, 2: 147-155
[25] Davidovich-Pinhas M, Bianco-Peled H. Acta Biomaterialia, 2011, 7: 625-633
[26] Kim M, Lee J Y, Jones C N, Revzin A, Tae G. Biomaterials, 2010, 31: 3596-3603
[27] Tae G, Kim Y J, Choi W I, Kim M, Stayton P S, Hoffman A S. Biomacromolecules, 2007, 8: 1979-1986
[28] Censi R, Fieten P J, Martino P D, Hennink W E, Vermonden T. Macromolecules, 2010, 43: 5771-5778
[29] Dong Y X, Saeed A O, Hassan W, Keigher C, Zheng Y, Tai H Y, Pandit A, Wang W X. Macromolecular Rapid Communications, 2012, 33: 120-126
[30] Dong Y X, Hassan W, Zheng Y, Saeed A O, Cao H L, Tai H Y, Pandit A, Wang W X. Journal of Materials Science: Materials in Medicine, 2012, 23: 25-35
[31] Du F S, Wang Y, Zhang R, Li Z C. Soft Matter, 2010, 6: 835-848
[32] Liu J, Jiang X L, Xu L, Wang X M, Hennink W E, Zhuo R X. Bioconjugate Chemistry, 2010, 10: 1827-1835
[33] Cheng R, Feng F, Meng F H, Deng C, Feijen J, Zhong Z Y. Journal of Controlled Release, 2011, 152: 2-12
[34] Tokatlian T, Segura T. WIRES Nanomedicine and Nanobiotechnology, 2010, 2: 305-315
[35] Varkouhi A K, Verheul R J, Schiffelers R M, Lammers T, Storm G, Hennink W E. Bioconjugate Chemistry, 2010, 21: 2339-2346
[36] Son S, Singha K, Kim W J. Biomaterials, 2010, 31: 6344-6354
[37] Jiang X, Zheng Y R, Chen H H, Leong K W, Wang T H, Mao H Q. Advanced Materials, 2010, 22: 2556-2560
[38] Zhu C H, Zheng M, Meng F H, Mickler F M, Ruthardt N, Zhu X L, Zhong Z Y. Biomacromolecules, 2012, 13: 769-778
[39] Sun W C, Davis P B. Journal of Controlled Release, 2010, 146: 118-127
[40] Gao W, Xu K H, Ji L F, Tang B. Toxicology Letters, 2011, 205: 86-95
[41] Shu S J, Zhang X G, Wu Z M, Wang Z, Li C X. Biomaterials, 2010, 31: 6039-6049
[42] Cerritelli S, Velluto D, Hubbell J A. Biomacromolecules, 2007, 8: 1966-1972
[43] Cabral H, Kataoka K. Science and Technology of Advanced Materials, 2010, 11: 1-10
[44] Torres E, Mainini F, Napolitano R, Fedeli F, Cavalli R, Aime S, Terreno E. Journal of Controlled Release, 2011, 154: 196-202
[45] Park K M, Lee D W, Sarkar B, Jung H, Kim J, Ko Y H, Lee K E, Jeon H, Kim K. Small, 2010, 13: 1430-1441
[46] Verheyen E, van der Wal S, Deschout H, Braeckmans K, de Smedt S, Barendregt A, Hennink W E, van Nostrum C F. Journal of Controlled Release, 2011, 156: 329-336
[47] Chien H W, Tsai W B, Jiang S Y. Biomaterials, 2012, 33: 5706-5712
[48] De Paz M V, Zamora F, Begines B, Ferris C, Galbis J A. Biomacromolecules, 2010, 11: 269-276
[49] Wu C L, Belenda C, Leroux J C, Gauthier M A. Chemistry A European Journal, 2011, 17: 10064-10070
[50] Nguyen D H, Choi J H, Joung Y K, Park K D. Journal of Bioactive and Compatible Polymers, 2011, 26(3): 287-300
[51] Choi S W, Lee S H, Mok H, Park T G. Biotechnology Progress, 2009, 1: 57-63
[52] Sun H L, Guo B N, Cheng R, Meng F H, Liu H Y, Zhong Z Y. Biomaterials, 2009, 30: 6358-6366
[53] Sun P J, Zhou D H, Gan Z H. Journal of Controlled Release, 2011, 155: 96-103
[54] Xu Y M, Meng F H, Cheng R, Zhong Z Y. Macromolecular Bioscience, 2009, 9: 1254-1261
[55] Jiang X L, Li L H, Liu J, Hennink W E, Zhuo R X. Macromolecular Bioscience, 2012, 12: 703-711
[56] Talelli M, Rijcken C J F, Oliveira S, van der Meel R, van Bergen en Henegouwen P M P, Lammers T, van Nostrum C F, Storm G, Hennink W E. Journal of Controlled Release, 2011, 151: 183-192
[57] Oumzil K, Khiati S, Grinstaff M W, Barthélémy P. Journal of Controlled Release, 2011, 151: 123-130

[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[5] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[6] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[7] 王荣民, 吕思瑶, 李涛, 何玉凤, 宋鹏飞. 碳酸钙模板法制备高分子微球[J]. 化学进展, 2016, 28(1): 75-82.
[8] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[9] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[10] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[11] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[12] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.
[13] 赵爽, 赵燕燕, 孟恒星, 李茜, 尹玉姬. 间充质干细胞扩增载体材料[J]. 化学进展, 2012, 24(01): 173-181.
[14] 唐诗洋, 孙晓君, 林丽, 孙艳, 刘献斌. 单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用[J]. 化学进展, 2011, 23(9): 1973-1984.
[15] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.
阅读次数
全文


摘要

含巯基/二硫键聚合物生物材料