English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1660-1668 DOI: 10.7536/PC180213 前一篇   后一篇

• 综述 •

胰岛封装技术及其在胰岛移植中的应用

韩毅1, 董海青1, 李胜2, 李维达2, 李永勇1*   

  1. 1. 上海市第十人民医院 同济大学医学院 生物医学工程与纳米科学研究院 上海 200092;
    2. 同济大学生命科学与技术学院 上海 200092
  • 收稿日期:2018-02-09 修回日期:2018-04-28 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 李永勇,e-mail:yongyong_li@tongji.edu.cn E-mail:yongyong_li@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51773154,31771090,51473124)资助

Islet Encapsulation and Its Application in Islet Transplantation

Yi Han1, Haiqing Dong1, Sheng Li2, Weida Li2, Yongyong Li1*   

  1. 1. Shanghai Tenth People's Hospital, Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092;
    2. School of Life Science and Technology, Tongji University, Shanghai 200092, China
  • Received:2018-02-09 Revised:2018-04-28 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51773154, 31771090, 51473124).
随着全球糖尿病患者人数逐年增长,临床上亟需一种行之有效的糖尿病治疗方案。胰岛移植可通过植入具有正常功能的胰岛以替代患者体内功能受损的胰岛,从而维持正常血糖水平,有望发展为理想的糖尿病治疗方法。然而,胰岛供体资源短缺,且移植后长期服用免疫抑制剂不仅产生诸多不良反应甚至会有致癌风险。以上瓶颈极大限制了胰岛移植的临床应用。采用天然高分子、合成高分子、无机化合物等生物材料对胰岛进行封装,营造免疫隔离微环境,避免宿主免疫细胞与植入胰岛直接接触,可有效抑制免疫排斥反应。免疫隔离的同时,胰岛的封装不影响胰岛素、葡萄糖、氧气等胰岛必需或输出关键分子的交换,同时确保移植胰岛的正常生理活性及精准控制血糖水平的能力。本文综述了胰岛封装的研究现状,常用材料及设计策略,并初步展望其应用前景。
With the rapid increase in number of diabetes patients in the world, there has been an urgent need for a clinically effective diabetes treatment. Islet transplantation is able to replace the impaired islets by implanting normal islets so as to maintain normal blood glucose level, which is recognized as an ideal treatment for diabetes. However, there is a shortage of islet donor resources, and the clinical outcome suffers from a variety of adverse reactions and even cancer risks for long-term use of immunosuppressive agents after transplantation. These challenges have greatly impeded the clinical application of islet transplantation. The applications of bio-derived or synthesized polymers(natural polymers, synthetic polymers, inorganic compounds and other biomaterials) to encapsulate islets enable to create an immune isolation microenvironment. These artificial constructs effectively inhibit immune rejection by avoiding the direct contact between host immune cells and implanted islets. In the application, the islet encapsulation is mandatory to keep the exchange capacity of essential key molecules, such as insulin, glucose and oxygen. This is necessary to ensure the normal physiological activity of transplanted islets and the ability to accurately control blood glucose level. This review summarizes the state-of-the-art of the field of islet encapsulation, including the introduction of the most employed materials, strategies of islet encapsulation, as well as the perspective.
Contents
1 Introduction
2 Advantages of islet encapsulation in islet transplantation
3 Encapsulation materials for islets and islet cells
3.1 Natural polymers
3.2 Synthetic macromolecules
3.3 Inorganic nanomaterials
4 Design strategy of encapsulation of islets and islet cells
4.1 Long-term immune isolation effect
4.2 Transportation of nutrients and oxygen
4.3 Biocompatibility of materials
4.4 Choice of the appropriate transplantation site
4.5 Suppression of the immune response around the graft
5 Conclusion and outlook

中图分类号: 

()
[1] Dagogo-Jack S. Diabetes Mellitus in Developing Countries and Underserved Communities. Cham:Springer International Publishing, 2017. 7.
[2] Tang Q, Desai T A. Nat. Med., 2016, 22:236.
[3] Markmann J F, Deng S, Huang X, Desai N M, Velidedeoglu E H, Lui C, Frank A, Markmann E, Palanjian M, Brayman K. Ann. Surg., 2003, 237:6.
[4] Robertson R P. New Engl. J. Med., 2004, 350:7.
[5] Dolgin E. Nature, 2016, 540:7632.
[6] Smith R M, Mandel T E. Immunol. Today., 2000, 21:1.
[7] Benthuysen J R, Carrano A C, Sander M. J. Clin. Invest., 2016, 126:10.
[8] Chang R, Faleo G, Russ H A, Parent A V, Elledge S K, Bernards D A, Allen J L, Villanueva K, Hebrok M, Tang Q, Desai T A. ACS Nano, 2017, 11:8.
[9] Desai T, Shea L D. Nat. Rev. Drug. Discov., 2017, 16:5.
[10] Lu J, Xia Q, Zhou Q. Sci. China Life. Sci., 2017, 60:3.
[11] Chae S Y, Lee M, Kim S W, Bae Y H. Biomaterials, 2004, 25:5.
[12] Downing R, Heald K, Hail C. Gut., 1990, 31:4.
[13] Soonshiong P, Heintz R E, Merideth N, Yao Q X, Yao Z W, Zheng T L, Murphy M, Moloney M K, Schmehl M, Harris M, Mendez R, Mendez R, Sandford P A. Lancet, 1994, 343:8903.
[14] Hoffman A S. Adv. Drug Del. Rev., 2012, 64.
[15] Kollmer M, Appel A A, Somo S I, Brey E M. Tissue Eng. Part B-Rev., 2016, 22:1.
[16] Rengifo H R, Giraldo J A, Labrada I, Stabler C L. Adv. Healthc. Mater., 2014, 3:7.
[17] Scharp D W, Marchetti P. Adv. Drug Del. Rev., 2014, 67/68:35.
[18] Burdick J A, Prestwich G D. Adv. Mater., 2011, 23:12.
[19] Velten F, Laue C, Schrezenmeir J. Biomaterials, 1999, 20:22.
[20] Harrington S, Williams J, Rawal S, Ramachandran K, Stehno-Bittel L. Tissue Eng. Part A, 2017, 23:19.
[21] Marchioli G, Zellner L, Oliveira C, Engelse M, de Koning E, Mano J, Karperien, van Apeldoorn A, Moroni L. J. Mater. Sci-Mater. M., 2017, 28:12.
[22] De Vos P, Lazarjani H A, Poncelet D, Faas M M. Adv. Drug Del. Rev., 2014, 67/68:15.
[23] Gill I, Ballesteros A. Trends Biotechnol., 2000, 18:7.
[24] Phelps E A, Templeman K L, Thule P M, Garcia A J. Drug. Deliv. Transl. Re., 2015, 5:2.
[25] 乔从德(Qiao C D). 高分子通报(Polymer Bulletin), 2010, 3.
[26] Schweicher J, Nyitray C, Desai T A. Front. Biosci., 2014, 19:1.
[27] Weber L M, He J, Bradley B, Haskins K, Anseth K S. Acta Biomater., 2006, 2:1.
[28] Lou S F, Zhang X Y, Zhang J M, Deng J, Kong D L, Li C. Mat. Sci. Eng. C-Mater., 2017, 78.
[29] Nyitray C E, Chang R, Faleo G, Lance K D, Bernards D A, Tang Q, Desai T A. ACS Nano, 2015, 9:6.
[30] Marchioli G, Luca A D, de Koning E, Engelse M, van Blitterswijk C A, Karperien M, van Apeldoorn A A, Moroni L. Adv. Healthc. Mater., 2016, 5:13.
[31] Wang F, Wang L, Li C, Abedalwafa M. Rev. Adv. Mater. Sci., 2013, 34:2.
[32] Mendelsohn A, Desai T. Adv. Exp. Med. Biol., 2010, 670:670.
[33] Trewyn B G, Slowing I I, Supratim G, Chen H T, Lin V S Y. Acc. Chem. Res., 2007, 40:9.
[34] Desai T A, Chu W H, Tu J K, Beattie G M, Hayek A, Ferrari M. Biotechnol. Bioeng., 1998, 57:1.
[35] Atchison N, Fan W, Brewer D D, Arunagirinathan M A, Hering B J, Kumar S, Papas K K, Kokkoli E, Tsapatsis M. Angew. Chem. Int. Ed., 2011, 50:7.
[36] Jaroch D B, Lu J, Madangopal R, Stull N D, Stensberg M, Shi J, Kahn J L, Herrera-Perez R, Zeitchek M, Sturgis J, Robinson J P, Yoder M C, Porterfield D M, Mirmira R G, Rickus J L. Am. J. Physiol-Endoc. M., 2013, 305:10.
[37] Zhang M, Desai T, Ferrari M. Biomaterials, 1998, 19:10.
[38] Zhao J, Wang X, Sun T, Li L. Nanotechnology, 2005, 16:10.
[39] Paulose M, Prakasam H E, Varghese O K, Peng L, Popat K C, Mor G K, Desai T A, Grimes C A. J. Phys. Chem. C, 2007, 111:41.
[40] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Edit., 2011, 50:13.
[41] Paulose M, Peng L, Popat K C, Varghese O K, Latempa T J, Bao N, Desai T A, Grimes C A. J. Membr. Sci., 2008, 319:1.
[42] Vegas A J, Veiseh O, Doloff J C, Ma M, Tam H H, Bratlie K, Li J, Bader A R, Langan E, Olejnik K. Nat. Biotechnol., 2016, 34:3.
[43] Vegas A J, Veiseh O, Gürtler M, Millman J R, Pagliuca F W, Bader A R, Doloff J C, Jie L, Chen M, Olejnik K. Nat. Med., 2016, 22:306.
[44] Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen K T. Tissue Eng., 2007, 13:3.
[45] Song K, Yang Y, Li S, Wu M, Wu Y, Lim M, Liu T. Mater. Sci. Eng. C., 2014, 40.
[46] Veriter S, Gianello P, Dufrane D. Curr. Diabetes. Rep., 2013, 13:5.
[47] Papas K K, Avgoustiniatos E S, Suszynski T M. Panminerva Med., 2016, 58:1.
[48] Pedraza E, Coronel M M, Fraker C A, Ricordi C, Stabler C L. Proc. Natl. Acad. Sci., 2012, 109:11.
[49] Pepper A R, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro A M J. Nat. Biotechnol., 2015, 33:5.
[50] Chatenoud L, Quaranta P, Antonini S, Spiga S, Mazzanti B, Curcio M, Mulas G, Diana M, Marzola P, Mosca F, Longoni B. PLoS One., 2014, 9:4.
[51] Ludwig B, Reichel A, Steffen A, Zimerman B, Schally A V, Block N L, Colton C K, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein S R. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:47.
[52] Mooranian A, Negrulj R, Takechi R, Jamieson E, Morahan G, Al-Salami H. Ther. Deliv., 2017, 8:10.
[53] Niknamasl A, Ostad S N, Soleimani M, Azami M, Salmani M K, Lotfibakhshaiesh N, Ebrahimi-Barough S, Karimi R, Roozafzoon R, Ai J. Cell Biol. Int., 2014, 38:10.
[54] Merani S, Toso C, Emamaullee J, Shapiro A M J. Br. J. Surg., 2008, 95:12.
[55] Berman D M, Molano R D, Fotino C, Ulissi U, Gimeno J, Mendez A J, Kenyon N M, Kenyon N S, Andrews D M, Ricordi C. Diabetes., 2016, 65:5.
[56] Sakata N, Aoki T, Yoshimatsu G, Tsuchiya H, Hata T, Katayose Y, Egawa S, Unno M. Diabetes MeTab. Res. Rev., 2014, 30:1.
[57] Daniel E, Olof E, Joey L, Per-Ola C. J. Transplant., 2011, 2011, 352043.
[58] Wolf-van Buerck L, Schuster M, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Nam-Apostolopoulos Y C, Klymiuk N, Wolf E, Seissler J. Xenotransplantation, 2015, 22:6.
[59] Veiseh O, Doloff J C, Ma M L, Vegas A J, Tam H H, Bader A R, Li J, Langan E, Wyckoff J, Loo W S, Jhunjhunwala S, Chiu A, Siebert S, Tang K, Hollister-Lock J, Aresta-Dasilva S, Bochenek M, Mendoza-Elias J, Wang Y, Qi M, Lavin D M, Chen M, Dholakia N, Thakrar R, Lacik I, Weir G C, Oberholzer J, Greiner D L, Langer R, Anderson D G. Nat. Mater., 2015, 14:6.
[60] Mendelsohn A D, Nyitray C, Sena M, Desai T A. Acta Biomater., 2012, 8:12.
[61] Mooranian A, Negrulj R, Al-Salami H. Drug Deliv. Transl. Re., 2016, 6:1.
[62] Graham J G, Zhang X, Goodman A, Pothoven K, Houlihan J, Wang S, Gower R M, Luo X, Shea L D. Tissue Eng. Part A., 2013, 19:11.
[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[5] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[6] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[7] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[8] 张宇琪, 俞计成, 沈群东, 顾臻. 随葡萄糖响应的合成类闭路胰岛素递释系统[J]. 化学进展, 2015, 27(1): 11-26.
[9] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[10] 周军, 白兆帅, 徐辉碧, 黄开勋*. 硒蛋白与糖尿病——硒的两面性[J]. 化学进展, 2013, 25(04): 488-494.
[11] 黄美玲, 武亚玲, 赵攀, 杨晓达*. 无机药物: 问题和解决思路[J]. 化学进展, 2013, 25(04): 650-660.
[12] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[13] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.
[14] 唐诗洋, 孙晓君, 林丽, 孙艳, 刘献斌. 单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用[J]. 化学进展, 2011, 23(9): 1973-1984.
[15] 王玮, 李博, 高长有. 生物材料表面性能调控骨髓间充质干细胞分化[J]. 化学进展, 2011, 23(10): 2160-2168.