English
新闻公告
More
化学进展 2015, Vol. 27 Issue (7): 945-952 DOI: 10.7536/PC150110 前一篇   后一篇

• 综述与评论 •

磁性金属-有机骨架材料的合成及其应用

王瑞莹1,2, 张超艳2, 王淑萍*1, 周友亚*2   

  1. 1. 河北师范大学化学与材料科学学院 石家庄 050024;
    2. 中国环境科学研究院 环境基准与风险评估国家重点实验室 北京 100012
  • 收稿日期:2015-01-01 修回日期:2015-02-01 出版日期:2015-07-15 发布日期:2015-06-15
  • 通讯作者: 王淑萍, 周友亚 E-mail:pingwsh@mail.hebtu.edu.cn;zhouyy@craes.org.cn
  • 基金资助:
    国家自然科学基金项目(No.21173067, 21075114)和河北省自然科学基金项目(No.B2011205037)资助

Synthesis and Application of Magnetic Metal-Organic Frameworks

Wang Ruiying1,2, Zhang Chaoyan2, Wang Shuping*1, Zhou Youya*2   

  1. 1. College of Chemistry & Material Science, Hebei Normal University, Shijiazhuang 050024, China;
    2. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
  • Received:2015-01-01 Revised:2015-02-01 Online:2015-07-15 Published:2015-06-15
  • Supported by:
    The work is supported by the National Natural Science Foundation of China (No. 21173067, 21075114) and the Natural Science Foundation of Hebei Province, China(No.B2011205037).
磁性金属-有机骨架(magnetic metal-organic frameworks,MMOFs)材料是近年来兴起的新型纳米功能材料,它由MOFs材料和磁性材料组合而成,具有高选择性、良好分散性和可多次重复利用等优点,在环境、医学和生物学研究领域应用广泛。本文介绍了MMOFs材料的四种合成方法,包括嵌入法、叠层法、封装法和混合法,其中嵌入法是指将磁性颗粒材料镶嵌在MOFs表面,叠层法是将MOFs层覆盖和叠加生长在官能化磁性颗粒材料表面,封装法是MOFs材料围绕磁性颗粒在其周围生长并将其包埋起来,混合法是将MOFs和磁性颗粒物通过物理或化学作用发生聚合合成。MOFs与磁性颗粒材料结合形成的MMOFs,既保留了MOFs材料的结构与性能,又增添了颗粒材料的磁性,从而大大拓展了MOFs的应用范围。鉴于MMOFs可携带特定的物质释放于指定位置,容易从复杂基质中分离,并可通过外部磁性进行定位与收集等优势与特点,其在生物医药、环境样品预处理和催化等领域得到了广泛的应用。
The magnetic metal-organic frameworks (MMOFs) are a group of emerging novel functional nanomaterials, which are made up of MOFs and magnetic particles. Because of their high selectivity, excellent dispersivity, and recyclability, MMOFs have been widely used in environmental, medical and biological fields. In this paper, we give a short introduction to the synthesis methods of MMOFs, including embedding, layer-by-layer, encapsulation, and mixing methods. In the embedding method, pretreated magnetic materials are added to the precursor solutions of MOFs to form the magnetic particles embedded MMOFs. In the layer-by-layer method, MOFs accumulate around the functionally modified magnetic materials and form the layered MMOFs. In the encapsulation method, MOFs grow around the magnetic particles and then the magnetic particles are included into the MOFs. In mixing method, MOFs and magnetic materials are mixed and then form the complexes through physical or chemical processes. MMOFs, the coordinator of MOFs and magnetic particles, combine both the structural functions of MOFs and the magnetic features of magnetic particles, which can greatly enhance their application scope. For example, as MMOFs can carry and deliver specific drugs in biological systems, it can be potentially used for targeted drug delivery in biomedicine. Because MMOFs can accumulate and separate some guest compounds from a complicated environmental matrix, they have broad application prospects in the enrichment and detection of environment pollutants. In addition, MMOFs can be used as catalysts or catalyst support systems in various chemical reactions to enhance the efficiency.

Contents
1 Introduction
2 Magnetic metal-organic framework materials
2.1 Magnetic nanoparticles/nanorods
2.2 Preparation methods of magnetic metal-organic framework materials
3 Application of magnetic metal-organic framework materials
3.1 Biomedicine
3.2 Environmental pretreatment
3.3 Catalysis
4 Concluding remark and future trend

中图分类号: 

()
[1] Batten S R, Robson R. Angew. Chem. Int. Ed., 1998, 37: 1460.
[2] Czaja A U, Trukhan N, Müller U. Chem. Soc. Rev., 2009, 38: 1284.
[3] Hu Y H, Zhang L. Adv. Mater., 2010, 22: E117.
[4] Chowdhury P, Mekala S, Dreisbach F, Gumma S. Microporous. Mesoporous. Mater., 2012, 152: 246.
[5] Yang J F, Yu Q H, Zhao Q, Liang J M, Dong J X, Li J P. Microporous. Mesoporous. Mater., 2012, 161: 154.
[6] Li Z J, Xiao G, Yang Q Y, Xiao Y L, Zhong C L. Chem. Eng. Sci., 2014, 120: 59.
[7] Falcaro P, Ricco R, Doherty C M, Liang K, Hill A J, Styles M J. Chem. Soc. Rev., 2014, 43: 5513.
[8] Kreno L E, Leong K, Farha O K, Allendorf M, Duyne R P V, Hupp J T. Chem. Rev., 2012, 112: 1105.
[9] Kong Z G, Sun X R, Li L, Wang H X, Wang X Y, Seik W N. Transition Met. Chem., 2013, 38: 449.
[10] Khan N A, Hasan Z, Jhung S H. J. Hazard. Mater., 2013, 244/245: 444.
[11] Keskin S, Seda Kizilel. Ind. Eng. Chem. Res., 2011, 50: 1799.
[12] Zhou Y Y, Yan X P, Kim K N, Wang S W, Liu M G. J. Chromatogr. A, 2006, 1116: 172.
[13] Ge D D, Lee H K. J. Chromatogr. A, 2011, 1218: 8490.
[14] Hu P, Morabito J V, Tsung C K. J. Am. Chem. Soc., 2014, 4: 4409.
[15] Long Z, Jia J, Wang S L, Kou L, Hou X D, Sepaniak M J. Microchem. J., 2013,110: 764.
[16] Sugikawa K, Nagata S, Furukawa Y, Kokado K, Sada K. J. Am. Chem. Soc., 2013, 25: 2565.
[17] Petit C, Bandosz T J. Adv. Mater., 2009, 21: 4753.
[18] Yan Z M, Zheng J N, Chen J F, Tong P, Lu M H, Lin Z, Zhang L. J. Chromatogr. A, 2014, 1366: 45.
[19] Lu G, Li S Z, Guo Z, Farha O K, Hauser B G, Qi X Y, Wang Y, Wang X, Han S Y, Liu X G, DuChene J S, Zhang H, Zhang Q C, Chen X D, Ma J, Loo S C J, Wei D W, Yang Y H, Hupp J H, Huo F W. Nat. Chem., 2012, 4: 310.
[20] 付艳艳(Fu Y Y), 严秀平(Yan X P).化学进展(Prog. Chem.), 2013, 25: 221.
[21] Falcaro P, Lapierre F, Marmiroli B, Styles M, Zhu Y G, Takahashi M, Hillad A J, Doherty C M. J. Mater. Chem. C., 2013, 1: 42.
[22] Zhou Y Y, Zhang C Y, Yan Z G, Li K J, Wang L, Xie Y B, Li F S, Liu Z, Yang J. Anal. Chim. Acta, 2012, 747: 36.
[23] Li K J, Zhou Y Y, Wang L, Hou H, Li F S. Res. Environ. Sci., 2010, 23: 198.
[24] Giakisikli G, Anthemidis A N. Anal. Chim. Acta, 2013, 789: 1.
[25] Ghosh S, Badruddoza A Z M, Hidajat K, Uddin M S. Environ. Chem. Eng., 2013,1: 122.
[26] Afkhami A, Moosavi R. J. Hazard. Mater., 2010, 174: 398.
[27] Huang C Z, Hu B. Spectrochim. Acta. B, 2008, 63: 437.
[28] Gao L, Chen L G. Microchim. Acta, 2013, 180: 423.
[29] Liu J C, Tsai P J, Yuan C L. Chen Y C. Anal. Chem., 2008, 80: 5425.
[30] Gao Q, Zheng H B, Luo D, Ding J, Feng Y Q. Anal. Chim. Acta, 2012, 720: 57.
[31] Jiang W, Wang W F, Pan B C, Zhang Q X, Zhang W M, Lv L. J. Am. Chem. Soc., 2014, 6: 3421.
[32] Ricco R, Malfatti L, Takahashi M, Hill A J, Falcaro P. J. Mater. Chem. A, 2013, 1: 13033.
[33] Stock N, Biswas S. Chem. Rev., 2012, 112: 933.
[34] Doherty C M, Knystautas E, Buso Dario, Villanova L, Konstas K, Hill A J, Takahashif M, Falcaro P. J. Mater. Chem., 2012, 22: 11470.
[35] Munuera C, Shekhah O, Wang H, Wöll C, Ocal C. Phys. Chem. Chem. Phys., 2008, 10: 7257.
[36] Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer R A, Wöll C. J. Am. Chem. Soc., 2007, 129(49): 15118.
[37] Zhang T, Zhang X F, Yan X J, Kong L Y, Zhang G C, Liu H O, Qiu J S, King L Y. Chem. Eng. J., 2013, 228: 398.
[38] Huo S H, Yan X P. Analyst, 2012, 137: 3445.
[39] Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmann T, Kaskel S. Chem. Commun., 2011, 47: 3075.
[40] He J C, Huang M Y, Wang D M, Zhang Z M, Li G K. J. Pharm. Biomed., 2014, 101: 84.
[41] Imaz I, Hernando J, Molina D R, Maspoch D. Angew. Chem. Int. Ed., 2009, 48: 2325.
[42] Champness N R. Angew. Chem. Int. Ed., 2009, 48: 2274.
[43] Imaz I, Martínez M R, Fernández L G, García F, Molina D R, Hernando J, Puntes V, Maspoch D. Chem. Commun., 2010, 46: 4737.
[44] Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21: 3843.
[45] Figuerola A, Corato R D, Manna L, Pellegrino T. Pharmacol. Res., 2010, 62: 126.
[46] Falcaro P, Buso D, Hill A J, Doherty C M. Adv. Mater., 2012, 24: 3153.
[47] Mejías R, Gutiérrez L, Salas G, Yagüe S P, Zotes T M, Lázaro F J, Morales M P, Barber D F. J. Controlled Release, 2013, 171: 225.
[48] Wierucka Marta, Biziuk M. Trend. Anal. Chem., 2014, 59: 50.
[49] Zhang W, Liang F, Li C, Qiu LG, Yuan Y P, Peng F M, Jiang X, Xi A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 186: 984.
[50] Sen T, Sebastianelli A, Bruce I J. J. Am. Chem. Soc., 2006, 128: 7130.
[51] Ai L H, Huang H Y, Chen Z L, Wei X, Jiang J. Chem. Eng. J., 2010, 156: 243.
[52] Zhu H Y, Jiang R, Xiao L, Zeng G M. Bioresour. Technol., 2010, 101: 5063.
[53] Sun Z H, Wang L F, Liu P P, Wang S C, Sun B, Jiang D Z, Xiao F S. Adv. Mater., 2006, 18: 1968.
[54] Chen X F, Ding N, Zang H, Yeun H, Zhao R S, Cheng C G, Liu J H, Chan T W D. J. Chromatogr. A, 2013, 1304: 241.
[55] Ke F, Qiu L G, Yuan Y P, Jiang X, Zhu J F. J. Mater. Chem., 2012, 22: 9497.
[56] Hu Y L, Huang Z L, Liao J, Li G K. Anal. Chem., 2013, 85: 6885.
[57] Zhang Z M, Tan W, Hu Y L, Li G K, Zan S. Analyst, 2012, 137: 968.
[58] Xie W, Han C, Zheng Z Q, Chen X M, Qian Y, Ding H Y, Shi L, Lv C H. Food. Chem., 2011, 127: 890.
[59] Chen X F, Hao Z, Xia W, Cheng J G, Zhao R S, Cheng C G, Lu X Q. Analyst, 2012, 137: 5411.
[60] Zhang G J, Zang X H, Li Z, Wang C, Wang Z. Talanta, 2014, 129: 600.
[61] Hu C, He M, Chen B B, Zhong C, Hu B. J. Chromatogr. A, 2014, 1356: 45.
[62] Yang S L, Chen C Y, Yan Z H, Cai Q Y, Yao S Z. J. Sep. Sci., 2013, 36: 1283.
[63] Wang Y, Xie J, Wu Y C, Hu X Y. Microchim. Acta, 2014, 181: 949.
[64] Escudero L A, Cerutti S, Olsina R A, Salonia J A, Gasquez J A. J. Hazard. Mater., 2010, 183: 218.
[65] Yu H M, Song H, Chen M L. Talanta, 2011, 85: 625.
[66] Bagheri A, Taghizadeh M, Behbahani M, Asgharinezhad A A, Salarian M, Dehghani A, Ebrahimzadeh H, Amini M M. Talanta, 2012, 99: 132.
[67] Sohrabi M R, Matbouie Z, Asgharinezhad A A, Dehghani A. Microchim. Acta, 2013, 180: 589.
[68] Taghizadeh M, Asgharinezhad A A, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A. Microchim. Acta, 2013, 180: 1073.
[69] Suleiman J S, Hu B, Peng H Y, Huang C Z. 2009, Talanta, 77: 1579.
[70] Zhao M, Deng C H, Zhang X M, Yang P Y. Proteomics, 2013, 13: 3387.
[71] Dhakshinamoorthy A, Opanasenko M, ?ejka J, Garcia H. Adv. Synth. Catal., 2013, 355: 247.
[72] Corma A, Garcia H, Xamena F X L i. Chem. Rev., 2010, 110: 4606.
[73] Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[74] Alaerts L, Séguin E, Poelman H, Starzyk F T, Jacobs P A, Vos D E D. Chem. Eur. J., 2006, 12: 7353.
[75] Arai T, Sato T, Kanoh H, Kaneko K, Oguma K, Yanagisawa A. Chem. Eur. J., 2008, 14: 882.
[76] Arai T, Kawasaki N, Kanoh H. Synlett, 2012, 23: 1549.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.