English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 361-372 DOI: 10.7536/PC141023 前一篇   后一篇

• 综述与评价 •

TinO2n-1系列氧化物的特性、制备方法及应用

应杭君, 田华军, 孟阵, 韩伟强*   

  1. 中国科学院宁波材料技术与工程研究所 宁波 315201
  • 收稿日期:2014-10-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 韩伟强 E-mail:hanweiqiang@nimte.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(No.XDA01020304), 国家自然科学基金项目(No.51371186),宁波3315先进储能材料国际团队,浙江省重点科技创新团队项目(No. 2013PT16), 浙江省博士后择优资助项目(No.BSH1302055)和宁波自然科学基金项目(No.2014A610046)资助

TinO2n-1 Series Compounds——Properties, Preparation Methods and Applications

Ying Hangjun, Tian Huajun, Meng Zhen, Han Weiqiang*   

  1. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2014-10-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No.XDA01020304), the National Natural Science Foundation of China (No.51371186), the Ningbo 3315 International Team of Advanced Energy Storage Materials, the Zhejiang Province Key Science and Technology Innovation Team (No. 2013PT16), the Zhejiang Province Preferential Postdoctoral Funded Project (No.BSH1302055), and Ningbo Natural Science Foundation (No. 2014A610046).
TinO2n-1是钛的一系列亚化学计量氧化物,具有导电性好、可见光响应能力强、电化学性能优异、环保无毒等诸多优良特性。其中,Ti4O7单晶的电导率达1500 S ·cm-1,和石墨相当。TinO2n-1的相结构、电磁学以及电化学方面的研究已有很多进展。目前,科研人员已开发出了一系列制备TinO2n-1的方法,最主要的方法是高温还原TiO2及其前驱体,已成功制备出纳米球、纳米管及纳米线等不同形貌的材料。由于其特性优良,TinO2n-1在惰性电极、催化剂载体、锂电池、热电及光电材料、光催化降解等方面的应用引起了研究人员的关注,并得到一些商业化应用,例如Ti4O7已开发为商业电极等,具有广阔的应用前景。本文对TinO2n-1的结构及物化特性进行了总结,并概括归纳了该系列亚氧化物的制备方法,最后介绍了TinO2n-1目前的应用情况并对今后的发展作出展望,以期为TinO2n-1系列化合物的研究发展提供相关的参考和依据。
TinO2n-1 is a series of substoichiometric oxides of titanium with many excellent properties such as high electronic conductivity, strong visible light absorption, outstanding electrochemistry stability and environmental compatibility. Ti4O7 exhibits a single crystal conductivity of 1500 S ·cm-1, comparable to that of graphite. These materials have been studied for many years and their properties of structure, magnetics and electrics have been widely investigated. A lot of preparation methods have been developed for the purpose of property research and application development. The most commonly used preparation method is reduction of TiO2 or its precursor at a high temperature, and some interesting morphologies have been obtained, like nanosphere, nanorod and nanowire. In recent years, their wonderful properties arouse peoples interest for their applications in noble electrodes, catalyst carriers, lithium batteries, thermoelectric and photoelectric materials, photocatalysis materials and so on. For example, Ti4O7 has been commoditized and utilized in many fields. However, a lot of work is remained to do for the full use of these titanic oxides, such as exploration of new feature and strategies to improve the specific surface area of these materials.According to the work of the predecessors, this paper introduces the structure features, physicochemical properties of TinO2n-1, and makes a summary of some typical preparation methods and applications, with the purpose of providing some reference for the research and development of TinO2n-1 series compounds.

Contents
1 Introduction
2 Structural properties of TinO2n-1
3 Physicochemical properties of TinO2n-1
4 Preparation methods of TinO2n-1
4.1 High temperature sintering
4.2 Laser ablation
4.3 Sol-gel sintering
5 Application of TinO2n-1
5.1 Application of TinO2n-1 in noble electrodes
5.2 Application of TinO2n-1 in fuel cells
5.3 Application of TinO2n-1 in batteries
5.4 Application of TinO2n-1 in thermoelectric and photoelectric materials
5.5 Application of TinO2n-1 in photocatalytic degradation
[JP] 6 Conclusion and outlook

中图分类号: 

()
[1] Ni M, Leung M K, Leung D Y, Sumathy K. Renew. Sust. Energ. Rev., 2007, 11: 401.
[2] Fujishima A, Honda K. Nature, 1972, 238: 37.
[3] O’regan B, Grfitzeli M. Nature, 1991, 353: 737.
[4] Kumar S G, Devi L G. J. Phys. Chem. A, 2011, 115: 13211.
[5] Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S W. Nat. Nanotech., 2010, 5: 148.
[6] Houlihan J, Mulay L. Mater. Res. Bull., 1971, 6: 737.
[7] Han W Q, Zhang Y. Appl. Phys. Lett., 2008, 92: 203117.
[8] Graves J E, Pletcher D, Clarke R L, Walsh F C. J. Appl. Electrochem., 1992, 22: 200.
[9] Bartholomew R F, Frankl D R. Phys. Rev., 1969, 187: 828.
[10] Smith J R, Walsh F C, Clarke R L. J. Appl. Electrochem., 1998, 28: 1021.
[11] Andersson S, Collen B, Kuylenstierna U, Magneli A. Acta. Chem. Scand., 1957, 11: 1641.
[12] Gusev A A, Avvakumov E G, Medvedev A, Masliy A I. Sci. Sinter., 2007, 39: 51.
[13] Walsh F C, Wills R G A. Electrochimica Acta, 2010, 55: 6342.
[14] Ioroi T, Senoh H, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K. J. Electrochem. Soc., 2008, 155: B321.
[15] Clarke R L, Harnsberger S K. Am. Lab., 1988, 20: 8.
[16] Cass R B. US 07006119,1990.
[17] Hayfield P C S. Development of a New Material: Monolithic Ti4O7 Ebonex Ceramic. 1st ed. Cambridge: Royal Society of Chemistry. 2002.
[18] Regonini D, Adamaki V, Bowen C R, Pennock S R, Taylor J, Dent A C E. Solid State Ionics, 2012, 229: 38.
[19] 管东波(Guan D B),毛健(Mao J). 物理学报(Acta Physica Sinica), 2012, 61(1): 17102.
[20] Harada S, Tanaka K, Inui H. J. Appl. Phys., 2010, 108: 083703.
[21] Nguyen S T, Lee J M, Yang Y H, Wang X. Ind. Eng. Chem. Res., 2012, 51: 9966.
[22] Schlenker C, Buder R, Schlenker M, Houlihan J F, Mulay L N. Phys. Status Solidi B, 1972, 54: 247.
[23] Weissmann M, Weht R. Phys. Rev. B, 2011, 84: 144419.
[24] Watanabe M, Ueno W, Hayashi T. J. Lumin., 2007, 122: 393.
[25] Hayfield P C S. US 06293961,1983.
[26] Gusev A A, Avvakumov E G, Vinokurova O B. Sci. Sinter., 2003, 35: 141.
[27] Schlenker C, Buder R, Schlenker M, Houlihan J F, Mulay L N. Phys. Status Solidi B, 1972, 54: 247.
[28] Nagasawa K, Kato Y, Bando Y, Takada T. J. Phys. Soc. Jpn., 1970, 29: 241.
[29] Han W Q, Wang X L. Appl. Phys. Lett., 2010, 97: 243104.
[30] Kao W H, Patel P, Haberichter S L. Electrochem. Soc., 1997, 144: 1907.
[31] Graves J E, Pletcher D, Clarke R L, Walsh F C. J. Appl. Electrochem., 1991, 21: 848.
[32] Hayfield P C S, Hill A. Int. J. Restor. Build. Monum., 2000, 6: 647.
[33] Chen G Y, Bare S R, Mallouk T E. J. Electrochem. Soc., 2002, 149: A1092.
[34] Regonini D, Dent A C, Bowen C R, Pennock S R, Taylor J. Mater. Lett., 2011, 65: 3590.
[35] Watanabe M. Phys. Status Solidi C, 2009, 6: 260.
[36] Li X X, Zhu A L, Qu W, Wang H J, Hui R, Zhang L, Zhang J J. Electrochim. Acta, 2010, 55: 5891.
[37] Canillas M, Chinarro E, Carballo V M, Jurado J R, Moreno B. J. Mater. Chem. B, 2013, 1: 6459.
[38] Siracusano S, Baglio V, D’Urso C, Antonucci V, Aricò A S. Electrochim. Acta, 2009, 54: 6292.
[39] Kohlbrecka K, Przyluski J. Electrochim. Acta, 1994, 39: 1591.
[40] Tang C, Zhou D B, Zhang Q. Mater. Lett., 2012, 79: 42.
[41] Zhu R J, Liu Y, Ye J W, Zhang X Y. J. Mater. Sci. : Mater. Electron., 2013, 24: 4853.
[42] Sen W, Xu B Q, Yang B, Sun H Y, Song J X, Wan H L, Dai Y N. Trans. Nonferrous Met. Soc. China, 2011, 21: 185.
[43] Zhang X Y, Liu Y, Ye J W, Zhu R J. Micro. Nano. Lett., 2013, 8: 251.
[44] Adamaki V, Clemens F, Ragulis P, Pennock S R, Taylor J, Bowen C R. J. Mater. Chem. A, 2014, 2: 8328.
[45] Toyoda M, Yano T, Tryba B, Mozia S, Tsumura T, Inagaki M. Appl. Catal. B : Environ., 2009, 88: 160.
[46] Kitada A, Hasegawa G, Kobayashi Y, Kanamori K, Nakanishi K, Kageyama H. J. Am. Chem. Soc., 2012, 134: 10894.
[47] Hirasawa M, Seto T, Orii T, Aya N, Shimura H. Appl. Surf. Sci., 2002, 197: 661.
[48] Portehault D, Maneeratana V, Candolfi C, Oeschler N, Veremchuk I, Grin Y, Sanchez C, Shimura H. ACS Nano, 2011, 5: 9052.
[49] Maneeratana V, Portehault D, Chaste J, Mailly D, Antonietti M, Sanchez C. Adv. Mater., 2014, 26: 2654.
[50] Pang Q, Kundu D, Cuisinier M, Nazar L F. Nat. Commun., 2014, 5: 1.
[51] Przy?uski J, Kolbrecka K. J. Appl. Electrochem., 1993, 23: 1063.
[52] Kolbrecka K, Przyluski J. Electrochim. Acta, 1994, 39: 1591.
[53] Smith J R, Nahle A H, Walsh F C. J. Appl. Electrochem., 1997, 27: 815.
[54] Ohkoshi S I, Tsunobuchi Y, Matsuda T, Hashimoto K, Namai A, Hakoe F, Tokoro H. Nat. Chem., 2010, 2: 539.
[55] Shanmugam S, Gedanken A. Small, 2007, 3: 1189.
[56] Yan W F, Mahurin S M, Pan Z W, Overbury S H, Dai S. J. Am. Chem. Soc., 2005, 127: 10480.
[57] Shih C C, Chang J R. J. Catal., 2006, 240: 137.
[58] Song S D, Zhang H M, Ma X P, Shao Z G, Baker R T, Yi B L. Int. J. Hydrogen Energy, 2008, 33: 4955.
[59] McGregor K, Frazer E, Urban A, Pownceby M, Deutscher R. Development of Inert Anode Materials for Electrowinning in Chloride Melts. Clayton South: ECS, 2006. 930.
[60] Kasian O, Luk'yanenko T V, Demchenko P, Gladyshevskii R E, Amadelli R, Velichenko A B. Electrochim. Acta, 2013, 109: 630.
[61] Kasian O, Luk'yanenko T V, Amadelli R, Velichenko A. ECS Trans., 2014, 58: 75.
[62] Ras A H, Van S J F. J. Appl. Electrochem., 1999, 29: 313.
[63] Li X H, Pletcher D, Walsh F C. Chem. Soc. Rev., 2011, 40: 3879.
[64] Devilliers D, Dinh T M, Mahé E, Dauriac V, Lequeux N. J. Electroanal. Chem., 2004, 573: 227.
[65] Chen G, Betterton E A, Arnold R G. J. Appl. Electrochem., 1999, 29: 961.
[66] Krulik G A, Golden J H. US 09894527,2003.
[67] Bejan D, Malcolm J D, Morrison L, Bunce N J. Electrochim. Acta, 2009, 54: 5548.
[68] Scialdone O, Galia A, Filardo G. Electrochim. Acta, 2008, 53: 7220.
[69] La D?njevac U D?, Jovi D?B M, Jovi D?V D, Radmilovi D?V R, Krstaji D?N V. Int. J. Hydrogen Energy, 2013, 38: 10178.
[70] Slavcheva E, Nikolova V, Petkova T, Lefterova E, Dragieva I, Vitanov T, Budevski E. Electrochim. Acta, 2005, 50: 5444.
[71] Sherif S E, Bejan D, Bunce N J. Can. J. Chem., 2010, 88: 928.
[72] Bejan D, Guinea E, Bunce N J. Electrochim. Acta, 2012, 69: 275.
[73] Kasian O, Luk’yanenko T, Velichenko A. Anodes based on platinized Ebonex®. San Francisco: ECS, 2013. 2423.
[74] Velichenko A B, Kasian O I, Luk’yanenko T V, Amadelli R, Demchenko P Y, Gladyshevskii R E. Prot. Met. Phys. Chem. Surf., 2013, 49: 705.
[75] Roen L M, Paik C H, Jarvi T D. Electrochem. Solid-State Lett., 2004, 7: A19.
[76] Knights S D, Colbow K M, Pierre J S, Wilkinson D P. J. Power Sources, 2004, 127: 127.
[77] Reiser C A, Bregoli L, Patterson T W, Jung S Y, Yang J D, Perry M L, Jarvi T D. Electrochem. Solid-State Lett., 2005, 8: A273.
[78] Wang Y J, Wilkinson D P, Zhang J J. Chem. Rev., 2011, 111: 7625.
[79] Paunovi D?P, Popovski O, Fidan D?evska E, Ranguelov B, Stoevska G D, Dimitrov A T, Had?i J S. J. Int. J. Hydrogen Energy, 2010, 35: 10073.
[80] Rashkova V, Kitova S, Vitanov T. Electrochim. Acta, 2007, 52: 3794.
[81] Krstajic N V, Vracar L M, Neophytides S G, Jaksic J M, Murase K, Tunold R, Jaksic M M. J. New Mater. Electrochem. Syst., 2006, 9: 83.
[82] Knights S D, Taylor J L, Wilkinson D P, Wainwright D S. US 09585696, 2003.
[83] Knights S D, Taylor J L, Wilkinson D P, Campbell S A. US 10689876, 2003.
[84] May B, Hodgson D R. US 09805145,2004.
[85] Cerri I, Nagami T, Davies J, Mormiche C, Vecoven A, Hayden B. Int. J. Hydrogen Energy, 2012, 38: 640.
[86] Scott K, Cheng H. J. Appl. Electrochem., 2002, 32: 583.
[87] Vra D?ar L M, Krstaji D?N V, Radmilovi D?V R, Jakši?M M. J. Electroanal. Chem., 2006, 587: 99.
[88] Babi D?B, Gulicovski J, Gaji D?-Krstaji D?L J, Elezovi D?N, Radmilovi D?V R, Krstaji D?N V, Vra D?ar L M. J. Power Sources, 2009, 193: 99.
[89] Antolini E, Gonzalez E R. Solid State Ionics, 2009, 180: 746.
[90] Ioroi T, Siroma Z, Fujiwara N, Yamazaki S I, Yasuda K. Electrochem. Commun., 2005, 7: 183.
[91] Senevirathne K, Hui R, Campbell S, Ye S Y, Zhang J J. Electrochim. Acta, 2012, 59: 538.
[92] Hammer B, Nørskov J K. Adv. Catal., 2000, 45: 71.
[93] Liang Z X, Zhao T S, Xu J B, Zhu L D. Electrochim. Acta, 2009, 54: 2203.
[94] Tuseeva E K, Mayorova N A, Sosenkin V E, Nikol’skaya N F, Vol’fkovich Y M, Krestinin A V, Zvereva G I, Grinberg V A, Khazova O A. Russ. J. Electrochem., 2008, 44: 884.
[95] Tian H J, Ying H J, Han W Q. Carbon-coated Magnéli phases Ti4O7 as anodes in lithium-ion batteries. San Francisco: ECS, 2013. 606.
[96] Han W Q, Wang X L. Magnéli phase Ti<em>nO2n-1 nanobelts as anodes for hybrid electrochemical-cells. Montreal: ECS, 2011. 606.
[97] Tao X Y, Wang J G, Ying Z G, Cai Q X, Zheng G Y, Gan Y P, Huang H, Xia Y, Liang C, Zhang W K. Nano Lett., 2014, 14: 5288.
[98] Loyns A C, Hill A, Ellis K G, Partington T J, Hill J M. J. Power Sources, 2005, 144: 329.
[99] Krstajic N V, Vracar L M, Radmilovic V R, Neophytides S G, Labou M, Jaksic J M, Tunold R, Falaras P, Jaksic M M. Surf. Sci., 2007, 601: 1949.
[100] Escalante G I L, Duron T S M, Cruz J C, Arriaga H L G. J. New Mat. Electrochem. Sys., 2010, 13: 227.
[101] Luo Z G, Sang S B, Wu Q M, Liu S Y. ECS Electrochem. Lett., 2013, 2: A21.
[102] Lu Y, Hirohashi M, Sato K. Mater. Trans., 2006, 47: 1449.
[103] Lu Y, Matsuda Y, Sagara K, Hao L, Otomitsu T, Yoshida H. Adv. Mater. Res., 2012, 415: 1291.
[104] Radecka M, Trenczek Z A, Zakrzewska K, Rekas M. J. Power Sources, 2007, 173: 816.
[105] Ikezawa S, Homyara H, Kubota T, Suzuki R, Koh S, Mutuga F, Yoshioka T, Nishiwaki A, Ninomiya Y, Rekas M. Thin Solid Films, 2001, 386: 173.
[106] Li X Z, Li F B, Yang C L, Ge W K. J. Photochem. Photobiol A: Chem., 2001, 141: 209.
[107] Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, Iwamoto N. Catal. Lett., 2000, 67: 135.
[108] Marinkovski M, Paunovi D?P, Bla?evska G J, Na D?evski G. Adv. Nat. Sci. : Theo. Appl., 2012, 1: 215.
[109] Tsumura T, Hattori Y, Kaneko K, Hirose Y, Inagaki M, Toyoda M. Desalination, 2004, 169: 269.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[5] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[6] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[7] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[8] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[9] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[13] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[14] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[15] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.