English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 373-384 DOI: 10.7536/PC141020 前一篇   后一篇

• 综述与评价 •

基于多肽结构的聚合物水凝胶

王见伟, 宋利锋, 赵瑾*, 原续波   

  1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
  • 收稿日期:2014-10-01 修回日期:2014-11-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 赵瑾 E-mail:zhaojin@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 51103095)资助

Polymer Hydrogels Based on Peptide Structure

Wang Jianwei, Song Lifeng, Zhao Jin*, Yuan Xubo   

  1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received:2014-10-01 Revised:2014-11-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51103095).
多肽由于具有良好的生物相容性和生物可降解性、生物活性以及自组装特性, 近年来受到了广泛的关注。将多肽自组装特性引入到聚合物中,可赋予聚合物形成凝胶性并对凝胶网络分子结构做出一定控制,进而使凝胶具有如环境响应、力学可调等结构控制性能;将特殊功能性多肽引入到化学交联的聚合物凝胶网络中,可赋予水凝胶生物功能性,如细胞黏附、酶降解、抗菌等;将多肽的凝胶网络构建、结构控制作用以及功能性同时引入获得的物理/化学双重交联凝胶不仅赋予水凝胶一定的功能性,且多肽自组装贡献的物理交联结构还能对化学交联凝胶网络起增强作用。本文综述了基于多肽自组装的物理交联聚合物水凝胶、多肽功能化的化学交联聚合物水凝胶以及基于多肽的物理/化学双重交联的聚合物水凝胶,并展望了这些水凝胶的发展前景。
Peptides with good biocompatibility and biodegradability, bioactivity and self-assembly ability have received widespread attention. Self-assembly properties of peptides can provide hydrogel formation ability to polymers, and then not only controlling gel network construction but endowing polymer hydrogels with stimuli-responsibility and mechanical modulation properties. By use of peptides with special functionality, chemical crosslinked polymer hydrogels are endowed with cell-adhesive, enzyme-sensitive and antibacterial biofunctionalities. In addition, introducing network construct and structural control properties as well as functionalities of peptide into physical/chemical double crosslinked hydrogels simultaneously can not only turn a hydrogel into functional materials but also enhance the chemical crosslinked network through peptide self-assembly. In this review, we summarize the current achievements in the study of peptide self-assembled polymer hydrogels, peptide-functionalized chemical crosslinked polymer hydrogels and physical/chemical double crosslinked polymer hydrogels based on peptide. Finally, development prospects of such hydrogels are briefly predicted.

Contents
1 Introduction
2 Physical cross-linked hydrogels
2.1 Hydrogels based on coiled coil assembly
2.2 Hydrogels based on β-sheet assembly
2.3 Hydrogels based on triple helix assembly
3 Chemical cross-linked hydrogels
3.1 Cell-adhesive
3.2 Enzyme-degradation
3.3 Antibacterial property
3.4 Tissue-adhesive
4 Physical/chemical double cross-linked hydrogels
5 Conclusion

中图分类号: 

()
[1] Qiu Y, Park K. Adv. Drug. Deliver.Rev., 2001, 53(3): 321.
[2] Drury J L, Mooney D J. Biomaterials, 2003, 24(24): 4337.
[3] Tibbitt M W, Anseth K S. Biotechnol. Bioeng., 2009, 103(4): 655.
[4] Duarte A P, Coelho J F, Bordado J C, Cidade M T, Gil M H. Prog. Polym. Sci., 2012, 37(8): 1031.
[5] Bouten P J M, Zonjee M, Bender J, Yauw S T, van Goor H, van Hest J, Hoogenboom R. Prog. Polym. Sci., 2014,39(7):1375.
[6] Mohammed A, Miller A F, Saiani A. Macromol. Symp., 2007, 251:88.
[7] Kope D?ek J, Yang J. Acta Biomater., 2009, 5(3): 805.
[8] Kope D?ek J, Yang J. Angew. Chem. Int. Edit., 2012, 51(30): 7396.
[9] Hern D L, Hubbell J A. J. Biomed. Mater. Res., 1998, 39(2): 266.
[10] Petka W A, Harden J L, McGrath K P, Wirtz D, Tirrell D A. Science, 1998, 281(5375): 389.
[11] Xu C, Breedveld V, Kope D?ek J. Biomacromolecules, 2005, 6(3): 1739.
[12] Shen W, Zhang K, Kornfield J A, Tirrell D A. Nat. Mater., 2006, 5(2): 153.
[13] Pechar M, Kope D?ková P, Joss L, Kope D?ek J. Macromol. Biosci., 2002, 2(5): 199.
[14] Vandermeulen G W M, Tziatzios C, Klok H A. Macromolecules, 2003, 36(11): 4107.
[15] Vandermeulen G W M, Tziatzios C, Duncan R, Klok H A. Macromolecules, 2005, 38(3): 761.
[16] Jing P, Rudra J S, Herr A B, Collier J H. Biomacromolecules, 2008, 9(9):2438.
[17] Yang J, Xu C, Kope D?ková P, Kope D?ek J. Macromol. Biosci., 2006, 6(3): 201.
[18] Wu K, Yang J, Koňák D?, Kope D?ková P, Kope D?ek J. Macromol. Chem. Phys., 2008, 209(5): 467.
[19] Wang C, Stewart R J, Kope D?ek J. Nature, 1999, 397(6718): 417.
[20] Yang J, Xu C, Wang C, Kope D?ek J. Biomacromolecules, 2006, 7(4): 1187.
[21] Wu K, Liu J, Johnson R N, Yang J, Kope D?ek J. Angew. Chem., 2010, 122(8): 1493.
[22] Pechar M, Pola R, Laga R, Ulbrich K, Bednaárovaá L, Malon DňP, Sieglová I, Král V, Fábry M, Vaneák O. Biomacromolecules, 2011, 12(10): 3645.
[23] Wu K, Yang J, Liu J, Kope D?ek J. J. Control. Release, 2012, 157(1): 126.
[24] Kverka M, Hartley J M, Chu T W, Yang J, Heidchen R, Kope D?ek J. Biomaterials, 2014, 35(22): 5886.
[25] Deacon S P E, Apostolovic B, Carbajo R J, Schott A K, Beck K, Vicent M J, Pineda-Lucena A P, Klok H A, Duncan R. Biomacromolecules, 2010, 12(1): 19.
[26] Burkoth T S, Benzinger T L S, Urban V, Lynn D G, Meredith S C, Thiyagarajan P. J. Am. Chem. Soc., 1999, 121(32): 7429.
[27] Collier J H, Messersmith P B. Adv. Mater., 2004, 16(11): 907.
[28] Eckhardt D, Groenewolt M, Krause E, Börner H G. Chem. Commun., 2005, (22): 2814.
[29] Rathore O, Sogah D Y. J. Am. Chem. Soc., 2001, 123(22): 5231.
[30] Hentschel J, Krause E, Börner H G. J. Am. Chem. Soc., 2006, 128(24): 7722.
[31] Börner H G, Smarsly B M, Hentschel J, Rank A, Schubert R, Geng Y, Discher D E, Hellweg T, Brandt A. Macromolecules, 2008, 41(4): 1430.
[32] Radu L C, Yang J, Kope D?ek J. Macromol. Biosci., 2009, 9(1): 36.
[33] Radu-Wu L C, Yang J, Wu K, Kope D?ek J. Biomacromolecules, 2009, 10(8): 2319.
[34] Wu L C, Yang J, Kope D?ek J. Biomaterials, 2011, 32(23): 5341.
[35] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294(5547): 1684.
[36] Elder A N, Dangelo N M, Kim S C, Washburn N R. Biomacromolecules, 2011, 12(7): 2610.
[37] Maslovskis A, Tirelli N, Saiani A, Miller A F. Soft Matter, 2011, 7(13): 6025.
[38] Stoica F, Alexander C, Tirelli N, Miller A F, Saiani A. Chem. Commun., 2008, (37): 4433.
[39] Maslovskis A, Guilbaud J B, Grillo I, Hodson N, Miller A F, Saiani A. Langmuir, 2014, 30(34):10471.
[40] Kar K, Amin P, Bryan M A, Persikov A V, Mohs A, Wang Y H, Brodsky B. J. Biol.Chem., 2006, 281(44): 33283.
[41] Koide T. Connect. Tissue Res., 2005, 46(3): 131.
[42] Kinberger G A, Cai W, Goodman M. J. Am. Chem. Soc., 2002, 124(51): 15162.
[43] Kinberger G A, Taulane J P, Goodman M. Tetrahedron, 2006, 62(22): 5280.
[44] Kojima C, Tsumura S, Harada A, Kono K. J. Am. Chem. Soc., 2009, 131(17): 6052.
[45] Suehiro T, Tada T, Waku T, Tanaka N, Hongo C, Yamamoto S, Nakahira A, Kojima C. Biopolymers, 2011, 95(4): 270.
[46] Kojima C, Suehiro T, Tada T, Sakamoto Y, Waku T, Tanaka N. Soft Matter, 2011, 7(19): 8991.
[47] Kojima C, Suehiro T. Chem. Lett., 2011, 40(11): 1249.
[48] Stahl P J, Romano N H, Wirtz D, Yu S M. Biomacromolecules, 2010, 11(9): 2336.
[49] Rubert Pérez C M, Panitch A, Chmielewski J A. Macromol. Biosci., 2011, 11(10): 1426.
[50] Perez C R, Rank L, Chmielewski J A. Chem. Commun., 2014, 50: 8174.
[51] Matsusaki M, Amekawa R, Matsumoto M, Tanaka Y, Kubota A, Nishida K, Akashi M. Adv. Mater., 2011, 23(26): 2957.
[52] Hersel U, Dahmen C, Kessler H. Biomaterials, 2003, 24(24): 4385.
[53] Shu X Z, Ghosh K, Liu Y, Palumbo F S, Luo Y, Clark R A, Prestwich G D. J. Biomed. Mater. Res. A, 2004, 68(2): 365.
[54] Park Y D, Tirelli N, Hubbell J A. Biomaterials, 2003, 24(6): 893.
[55] Schmedlen R H, Masters K S, West J L. Biomaterials, 2002, 23(22): 4325.
[56] Mann B K, Gobin A S,Tsai A T, Schmedlen R H, West J L. Biomaterials, 2001, 22(22): 3045.
[57] Burdick J A, Anseth K S. Biomaterials, 2002, 23(22): 4315.
[58] Zhu J, Beamish J A, Tang C, Kottke-Marchant K, Marchant R E. Macromolecules, 2006, 39(4): 1305.
[59] Liu S Q, Tian Q, Wang L, Hedrick J L, Hui J H P, Yang Y Y, Ee P L R. Macromol. Rapid. Commun., 2010, 31(13): 1148.
[60] Yang F, Williams C G, Wang D A, Lee H, Manson P N, Elisseeff J. Biomaterials, 2005, 26(30): 5991.
[61] Wang L S, Lee F, Lim J, Du C, Wan A C, Lee S S, Kurisawa M. Acta Biomater., 2014, 10(6): 2539.
[62] Zhu J. Biomaterials, 2010, 31(17): 4639.
[63] Patterson J, Hubbell J A. Biomaterials, 2010, 31(30): 7836.
[64] Lévesque S G, Shoichet M S. Bioconjugate. Chem., 2007, 18(3): 874.
[65] Fonseca K B, Bidarra S J, Oliveira M J, Granja P L, Barrias C C. Acta Biomater., 2011, 7(4): 1674.
[66] Su J, Wall S T, Healy K E, Wildsoet C F. Tissue. Eng. A, 2009, 16(3): 905.
[67] Feng Q, Zhu M, Wei K, Bian L. PloS One, 2014, 9(6): 0099587.
[68] Jo Y S, Rizzi S C, Ehrbar M, Weber F E, Hubbell J A, Lutolf M P. J. Biomed. Mater. Res. A, 2010, 93(3): 870.
[69] Aimetti A A, Tibbitt M W, Anseth K S. Biomacromolecules, 2009, 10(6): 1484.
[70] Zhou C, Li P, Qi X, Sharif A R M, Poon Y F, Cao Y, Chang M W, Leong S S J, Chan-Park M B. Biomaterials, 2011, 32(11): 2704.
[71] Song A, Rane A A, Christman K L.Acta Biomaterialia, 2012, 8(1): 41.
[72] Cleophas R T C, Sjollema J, Busscher H J, Kruijtzer J A, Liskamp R M. Biomacromolecules, 2014,15(9):3390.
[73] Cleophas R T C, Riool M, Quarles van Ufford H L C, Zaat S A, Kruijtzer J A, Liskamp R M. ACS Macro Lett., 2014, 3: 477.
[74] Zhou Y, Nie W, Zhao J, Yuan X. J. Mater. Sci.: Mater. Med., 2013, 24(10): 2277.
[75] Nie W, Yuan X , Zhao J, Zhou Y, Bao H. Carbohydr. Polym., 2013, 96(1): 342.
[76] Liu B, Lewis A K, Shen W. Biomacromolecules, 2009, 10(12): 3182.
[77] Yao M H, Yang J, Du M S, Song J T, Yu Y, Chen W,Zhao Y D, Liu B. J. Mater. Chem. B, 2014, 2(20): 3123.
[78] Betancourt T, Pardo J, Soo K, Soo K, Peppas N A. J. Biomed.Mater. Res. A, 2010, 93(1): 175.
[79] Lee H J, Lee J S, Chansakul T, Yu C, Elisseeff J H, Yu S M. Biomaterials, 2006, 27(30): 5268.
[80] Lee H J, Yu C, Chansakul T, Hwang N S, Varghese S, Yu S M, Elisseeff J H. Tissue. Eng. A, 2008, 14(11): 1843
[81] Ryan D M, Nilsson B L. Polym. Chem., 2012, 3(1): 18.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[5] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[6] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[7] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[8] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[11] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[12] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[13] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[14] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[15] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
阅读次数
全文


摘要

基于多肽结构的聚合物水凝胶