English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 1-10 DOI: 10.7536/PC140737 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

肿瘤标志蛋白的电化学分析

曹亚1, 朱小立1, 赵婧1, 李昊2, 李根喜*1,2   

  1. 1. 上海大学生命科学学院 生物传感技术实验室 上海 200444;
    2. 南京大学生物化学系 医药生物技术国家重点实验室 南京 210093
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 李根喜 E-mail:genxili@nju.edu.cn
  • 基金资助:

    国家杰出青年科学基金项目(No. 20925520)资助

Electrochemical Analysis of Tumor Marker Proteins

Cao Ya1, Zhu Xiaoli1, Zhao Jing1, Li Hao2, Li Genxi*1,2   

  1. 1. Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China;
    2. State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, Nanjing University, Nanjing 210093, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Science Foundation for Distinguished Young Scholars of China (No. 20925520).

随着单克隆抗体技术和免疫学检测技术的不断发展,对癌症相关的肿瘤标志蛋白进行检测分析成为目前癌症早期筛查和诊断最为重要的手段。另一方面,随着分子识别与界面组装技术的发展,电化学检测技术在生物分析领域展现出一些独特的优势,比如操作简单、易于小型化、成本低、灵敏度高等。尤其是近年来,由于特异性结合肿瘤标志蛋白的各种抗体、适体、小分子多肽等被筛选出来,各种纳米材料和纳米技术在电化学分析检测中的应用不断被发掘,新型分子标记技术、界面组装技术以及信号放大技术不断被开发和应用,因此,电化学检测技术在肿瘤标志蛋白的定量分析方面获得了空前的发展机遇,发展极为迅速。本文结合作者所在实验室的一些代表性成果对近年来该领域的研究进展给予简短综述,并对未来的发展前景进行展望。

With the development of monoclonal antibody and immunological detection technology, the detection of tumor marker proteins becomes the most important method for early screening and diagnosis of cancer. On the other hand, with the development of molecular recognition and surface assembly techniques, electrochemical analysis displays some unique advantages in biological analysis, such as simple operation, easy-to-miniaturize nature, low cost, sensitivity, and so on. Especially in recent years, various antibodies, aptamers and peptides that can specifically bind with tumor marker proteins have been screened out. Various nanomaterials and nanotechnologies have been explored in the application to electrochemical analysis. Many novel techniques for molecule labeling, surface self-assembly, and signal amplification have been proposed. So, electrochemical analysis obtains unprecedented opportunities in the quantitative detection of tumor marker proteins, and more and more achievements are reported. In this review, by commenting on some typical work conducted in the lab of the authors, we summarize the recent research progress on the electrochemical analysis of tumor marker proteins and make an outlook on the trends of the related research fields in the future.

Contents
1 Introduction
2 Electrochemical immunoassay based on antibody
3 Electrochemical analysis based on aptamer
4 Electrochemical analysis based on polypeptide
5 Electrochemical analysis based on other recognition elements
6 Conclusion and outlook

中图分类号: 

()

[1] Lacroix M. Endocrine-Related Cancer, 2006, 13: 1033.
[2] Fisher B, Jeong J H, Anderson S, Bryant J, Fisher E R, Wolmark N. N. Engl. J. Med., 2002, 347: 567.
[3] Berois N, Varangot M, Aizen B, Estrugo R, Zarantonelli L, Fernández P, Krygier G, Simonet F, Barrios E, Musé I, Osinaga E. Eur. J. Cancer, 2000, 36: 717.
[4] Tothill I E. Semin. Cell Dev. Biol., 2009, 20: 55.
[5] Molina R, Gion M. Breast, 1998, 7: 187.
[6] Koepke J A. Cancer, 1992, 69: 1578.
[7] Du D, Zou Z X, Shin Y, Wang J, Wu H, Engelhard M H, Liu J, Aksay I A, Lin Y H. Anal. Chem., 2010, 82: 2989.
[8] Wilson M S. Anal. Chem., 2005, 77: 1496.
[9] Chikkaveeraiah B V, Bhirde A A, Morgan N Y, Eden H S, Chen X. ACS Nano, 2012, 6: 6546.
[10] Luo X L, Davis J J. Chem. Soc. Rev., 2013, 42: 5944.
[11] Derkus B, Emregul E, Yucesan C, Emregul K C. Biosens. Bioelectron., 2013, 46: 53.
[12] Chen D H, Shen M, Cao Y, Bo B, Chen Z, Shu Y Q, Li G X. Electrochem. Commun., 2013, 27: 38.
[13] Chen H X, Mei Q H, Jia S S, Koh K, Wang K M, Liu X J. Analyst, 2014, 139: 4476.
[14] Luo X L, Xu Q, James T, Davis J J. Anal. Chem., 2014, 86: 5553.
[15] Vasudev A, Kaushik A, Bhansali S. Biosens. Bioelectron., 2013, 39: 300.
[16] Ozdemir M S, Marczak M, Bohets H, Bonroy K, Roymans D, Stuyver L, Vanhoutte K, Pawlak M, Bakker E. Anal. Chem., 2013, 85: 4770.
[17] Prabhulkar S, Alwarappan S, Liu G D, Li C Z. Biosens. Bioelectron., 2009, 24: 3524.
[18] Akter R, Rhee C K, Rahman M A. Biosens. Bioelectron., 2013, 50: 118.
[19] Zheng D Y, Zhu X J, Ding X R, Zhu X L, Yin Y M, Li G X. Talanta, 2013, 105: 187.
[20] Munge B S, Coffey A L, Doucette J M, Somba B K, Malhotra R, Patel V, Gutkind J S, Rusling J F. Angew. Chem. Int. Ed., 2011, 50: 7915.
[21] Akter R, Rahman M A, Rhee C K. Anal. Chem., 2012, 84: 6407.
[22] Wu X F, Xue P, Kang Y J, Hui K M. Anal. Chem., 2013, 85: 8661.
[23] Yang G H, Li L L, Rana R K, Zhu J J. Carbon, 2013, 61: 357.
[24] Hou L, Gao Z Q, Xu M D, Cao X, Wu X P, Chen G N, Tang D P. Biosens. Bioelectron., 2013, 54: 365.
[25] Yu Y, Gao T, Li H, Ye Z H, Chen Z, Li G X. Electrochem. Commun., 2014, 42: 6.
[26] Dirks R M, Pierce N A. Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 15275.
[27] Ge Y Q, Wu J, Ju H X, Wu S. Talanta, 2014, 120: 218.
[28] Zhang H, Li F, Dever B, Wang C, Li X F, Le X C. Angew. Chem. Int. Ed., 2013, 52: 10698.
[29] Ren K W, Wu J, Yan F, Ju H X. Sci. Rep., 2014, 4: 4360.
[30] Tang D P, Hou L, Niessner R, Xu M D, Gao Z Q, Knopp D. Biosens. Bioelectron., 2013, 46: 37.
[31] Lai G S, Wu J, Ju H X, Yan F. Adv. Funct. Mater., 2011, 21: 2938.
[32] Wang J, Li G X. Curr. Med. Chem., 2011, 18: 4107.
[33] Huang C C, Huang Y F, Cao Z, Tan W, Chang H T. Anal. Chem., 2005, 77: 5735.
[34] Sosic A, Meneghello A, Antognoli A, Cretaio E, Gatto B. Sensors, 2013, 13: 13425.
[35] Wang J, Meng W Y, Zheng X F, Liu S L, Li G X. Biosens. Bioelectron., 2009, 24: 1598.
[36] Li C, Wang Z Y, Gao T, Duan A P, Li G X. Chem. Commun., 2013, 49: 3760.
[37] Zheng T T, Zhang Q F, Feng S, Zhu J J, Wang Q, Wang H. J. Am. Chem. Soc., 2014, 136: 2288.
[38] Zhu X L, Yang J H, Liu M, Wu Y, Shen Z M, Li G X. Anal. Chim. Acta, 2013, 764: 59.
[39] Li T, Fan Q, Liu T, Zhu X L, Zhao J, Li G X. Biosens. Bioelectron., 2010, 25: 2686.
[40] Zhu X L, Feng C, Ye Z H, Chen Y Y, Li G X. Sci. Rep., 2014, 4: 4169.
[41] Yi Z, Li X Y, Gao Q, Tang L J, Chu X. Analyst, 2013, 138: 2032.
[42] Li D, Song S P, Fan C H. Acc. Chem. Res., 2010, 43: 631.
[43] Lai R Y, Plaxco K W, Heeger A J. Anal. Chem., 2007, 79: 229.
[44] Thomas J M, Chakraborty B, Sen D, Yu H Z. J. Am. Chem. Soc., 2012, 134: 13823.
[45] Liu Y, Zhou Q, Revzin A. Analyst, 2013, 138: 4321.
[46] Ma F, Ho C, Cheng A K H, Yu H Z. Electrochim. Acta, 2013, 110: 139.
[47] Liu Y, Tuleouva N, Ramanculov E, Revzin A. Anal. Chem., 2010, 82: 8131.
[48] Chen Y, Pui T S, Kongsuphol P, Tang K C, Arya S K. Biosens. Bioelectron., 2014, 53: 257.
[49] Cao Y, Chen D H, Chen W W, Yu J C, Chen Z, Li G X. Anal. Chim. Acta, 2014, 812: 45.
[50] Zhao J, He X L, Bo B, Liu X J, Yin Y M, Li G X. Biosens. Bioelectron., 2012, 34: 249.
[51] Cheng W, Ding S J, Li Q, Yu T X, Yin Y B, Ju H X, Ren G S. Biosens. Bioelectron., 2012, 36: 12.
[52] Fan Q, Zhao J, Li H, Zhu L, Li G X. Biosens. Bioelectron., 2012, 33: 211.
[53] Lu J, Paulsen J T, Jin D Y. Anal. Chem., 2013, 85: 8240.
[54] Miao P, Ning L M, Li X X, Shu Y Q, Li G X. Biosens. Bioelectron., 2011, 27: 178.
[55] Zhao J, Hu S S, Zhong W D, Wu J G, Shen Z M, Chen Z, Li G X. ACS Appl. Mater. Interfaces, 2014, 6: 7070.
[56] Hu R, Wen W, Wang Q L, Xiong H Y, Zhang X H, Gu H S, Wang S F. Biosens. Bioelectron., 2014, 53: 384.
[57] Miodek A, Castillo G, Hianik T, Korri-Youssoufi H. Anal. Chem., 2013, 85: 7704.
[58] Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Ed., 2009, 48: 4785.
[59] Zhao J, Chen G F, Zhu L, Li G X. Electrochem. Commun., 2011, 13: 31.
[60] Bai L J, Yuan R, Chai Y Q, Zhuo Y, Yuan Y L, Wang Y. Biomaterials., 2012, 33: 1090.
[61] Song W, Li H, Liang H, Qiang W B, Xu D K. Anal. Chem., 2014, 86: 2775.
[62] Mascini M, Palchetti I, Tombelli S. Angew. Chem. Int. Ed., 2012, 51: 1316.
[63] Pavan S, Berti F. Anal. Bioanal. Chem., 2012, 402: 3055.
[64] Feng L Y, Wu L, Wang J S, Ren J S, Miyoshi D, Sugimoto N, Qu X G. Adv. Mater., 2012, 24: 125.
[65] Wang X, Piro B, Reisberg S, Anquetin G, de Rocquigny H, Jiang P, Wang Q, Wu W, Pham M C, Dong C Z. Biosens. Bioelectron., 2014, 61: 57.
[66] Kafi M A, Kim T H, An J H, Choi J W. Anal. Chem., 2011, 83: 2104.
[67] Li H, Xie H N, Cao Y, Ding X R, Yin Y M, Li G X. Anal. Chem., 2013, 85: 1047.
[68] Li H, Xie H N, Huang Y, Bo B, Zhu X L, Shu Y Q, Li G X. Chem. Commun., 2013, 49: 9848.
[69] Li H, Xie H N, Yang N N, Huang Y, Sun L Z, Li G X. Chem. Commun., 2013, 49: 5387.
[70] Wang X Y, Li H, Li X X, Chen Y Y, Yin Y M, Li G X. Electrochem. Commun., 2014, 39: 12.
[71] Xie H N, Li H, Huang Y, Wang X Y, Yin Y M, Li G X. ACS Appl. Mater. Interfaces, 2014, 6: 459.
[72] Huang Y, Li H, Gao T, Liu X J, Li G X. Analyst, 2014, 139: 3744.
[73] Cash K J, Ricci F, Plaxco K W. J. Am. Chem. Soc., 2009, 131: 6955.
[74] Fei Y H, Liu D, Wu Z S, Shen G L, Yu R Q. Bioconjug. Chem., 2011, 22: 2369.
[75] Vallée-Bélisle A, Ricci F, Uzawa T, Xia F, Plaxco K W. J. Am. Chem. Soc., 2012, 134: 15197.
[76] Wu Z, Zhen Z, Jiang J H, Shen G L, Yu R Q. J. Am. Chem. Soc., 2009, 131: 12325.
[77] Cao Y, Zhu S, Yu J C, Zhu X J, Yin Y M, Li G X. Anal. Chem., 2012, 84: 4314.
[78] Wang G F, He X P, Wang L, Zhang X J. Biosens. Bioelectron., 2013, 42: 337.
[79] Wang Q, Jiang B Y, Xu J, Xie J Q, Xiang Y, Yuan R, Chai Y Q. Biosens. Bioelectron., 2013, 43: 19.
[80] Zhao J, Zhu L, Guo C, Gao T, Zhu X L, Li G X. Biosens. Bioelectron., 2013, 49: 329.
[81] Gorodetsky A A, Ebrahim A, Barton J K. J. Am. Chem. Soc., 2008, 130: 2924.
[82] Pan Q, Zhang R Y, Bai Y F, He N Y, Lu Z H. Anal. Biochem., 2008, 375: 179.
[83] Shen M, Yang M, Li H, Liang Z Q, Li G X. Electrochim. Acta, 2012, 60: 309.
[84] Zhu S, Cao Y, Xu Y Y, Yin Y M, Li G X. Int. J. Mol. Sci., 2013, 14: 10298.
[85] Ye Z H, Zhang B, Yang Y C, Wang Z X, Zhu X L, Li G X. Microchim. Acta, 2014, 181: 139.
[86] Yin T T, Li H, Yang N N, Gao T, Sun L Z, Li G X. Biosens. Bioelectron., 2014, 56: 1.
[87] Macus R A, Sutin N. Biochim. Biophys. Acta, 1985, 811: 265.
[88] Li G, Miao P. Electrochemical Analysis of Proteins and Cells. Berlin: Springer, 2012.

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[7] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[8] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[9] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[10] 傅力, 张怀伟, 叶玮婷, 叶辰, 林正得. 固态电分析化学及其植物研究[J]. 化学进展, 2021, 33(8): 1440-1449.
[11] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[12] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[13] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[14] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[15] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
阅读次数
全文


摘要

肿瘤标志蛋白的电化学分析