English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1633-1644 DOI: 10.7536/PC140616 前一篇   后一篇

• 综述与评论 •

功能离子液体杂化固相纳米材料的制备及催化应用

李善建*1,2, 冯拉俊1   

  1. 1. 西安理工大学材料科学与工程学院 西安 710048;
    2. 西安石油大学化学化工学院 西安 710065
  • 收稿日期:2014-06-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 李善建 E-mail:lishanjian@xsyu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51174160)资助

Preparation and Catalytic Application of Task-Specific Ionic Liquid Hybrid Solid-Phase Nano Materials

Li Shanjian*1,2, Feng Lajun1   

  1. 1. School of Materials Science and Technology, Xi'an University of Technology, Xi'an 710048, China;
    2. College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
  • Received:2014-06-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51174160)

离子液体是一种新颖的软功能材料,它既可以作为催化反应的绿色介质,也可以作为催化反应的活性组分,还可以作为一种客体的催化功能分子来修饰一些固相纳米材料。本文主要立足于多相催化材料的设计合成和应用的角度,结合近几年来一些新颖的固相纳米材料,系统地综述了功能离子液体对这些固相材料的杂化方法及其在催化应用中表现出的一些独特的催化性能。最后,对功能离子液体杂化固相纳米材料的研究现状进行了总结,并对将来可能的发展方向进行了展望。

Ionic liquids, as novel soft functional materials, can serve as green solvent and active center in catalytic reaction. Meanwhile, it can be used as a catalytically functional molecule to decorate other solid nano materials. In this paper, the concept toward task-specific ionic liquid (TSILs) hybrid solid nano materials and new catalytic performance are systematically reviewed from the perspective of design,synthesis and application of heterogeneous catalytic materials. Finally, we summarized state of the art and made an outlook about TSILs hybrid solid nano materials.

Contents
1 Introduction
2 TSILs hybrid silica-based inorganic materials
2.1 Confining TSILs by physical absorption
2.2 Anchoring TSILs by covalent attachment
3 TSILs hybrid magnetic nano materials
4 TSILs hybrid organic polymers
5 TSILs hybrid carbon-based nano materials
6 TSILs hybrid metal-organic frameworks (MOFs) materials
7 Conclusion and outlook

中图分类号: 

()

[1] Dupont J, de Souza R F, Suarez P A Z. Chem. Rev., 2002, 102: 3667.
[2] Rogers R D, Seddon K R. Science, 2003, 302: 792.
[3] Davis J H. Chem. Lett., 2004, 33: 1072.
[4] Giernoth R. Angew. Chem. Int. Ed., 2010, 49: 2834.
[5] Yue C, Fang D, Liu L, Yi T F. J. Mol. Liq., 2011, 163: 99.
[6] Welton T. Chem. Rev., 1999, 99: 2071.
[7] Plechkova N V, Seddon K R. Chem. Soc. Rev., 2008, 37: 123.
[8] Wang Y, Yang H. J. Am. Chem. Soc., 2005, 127: 5316.
[9] Antonietti M, Kuang D, Smarsly B, Zhou Y. Angew. Chem. Int. Ed., 2004, 43: 4988.
[10] Hapiot P, Lagrost C. Chem. Rev., 2008, 108: 2238.
[11] Olivier-Bourbigou H, Magna L, Morvan D. Appl. Catal. A, 2010, 373: 1.
[12] Zhang Q, Zhang S, Deng Y. Green Chem., 2011, 13: 2619.
[13] Valkenberg M, HölderichW. Green Chem., 2001, 4: 88.
[14] Mehnert C P. Chem. Eur. J., 2005, 11: 50.
[15] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359: 710.
[16] Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279: 548.
[17] Hoffmann F, Cornelius M, Morell J, Fröba M. Angew. Chem. Int. Ed., 2006, 45: 3216.
[18] Dai H. Acc. Chem. Res., 2002, 35: 1035.
[19] Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Science, 2004, 306: 1362.
[20] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E. Science, 2009, 324: 1312.
[21] Stankovich S, Dikin D A, Dommett G H, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S. Nature, 2006, 442: 282.
[22] Deng Y, Qi D, Deng C, Zhang X, Zhao D. J. Am. Chem. Soc., 2008, 130: 28.
[23] Kang Y S, Risbud S, Rabolt J F, Stroeve P. Chem. Mater., 1996, 8: 2209.
[24] Paul D, Robeson L. Polymer, 2008, 49: 3187.
[25] Jancar J, Douglas J, Starr F W, Kumar S, Cassagnau P, Lesser A, Sternstein S S, Buehler M. Polymer, 2010, 51: 3321.
[26] James S L. Chem. Soc. Rev., 2003, 32: 276.
[27] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23: 249.
[28] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112: 673.
[29] Zhuravlev L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173: 1.
[30] Iler R K. The Chemistry of Silica, New York: Wiley, 1979.
[31] Valkenberg M, DeCastro C, Hölderich W. Appl. Catal. A, 2001, 215: 185.
[32] DeCastro C, Sauvage E, Valkenberg M, Hölderich W. J. Catal., 2000, 196: 86.
[33] Karimi B, Vafaeezadeh M. Chem. Commun., 2012, 48: 3327.
[34] Zhang Q, Luo J, Wei Y. Green Chem., 2010, 12: 2246.
[35] Yang H, Han X, Li G, Wang Y. Green Chem., 2009, 11: 1184.
[36] Cai C, Wang H, Han J. Appl. Surf. Sci., 2011, 257: 9802.
[37] Jiang N, Jin H, Mo Y H, Prasetyanto E A, Park S E. Micropor. Mesopor. Mater., 2011, 141: 16.
[38] Parvin M N, Jin H, Ansari M B, Oh S S, Park S E. Appl. Catal. A, 2011, 413/414: 205.
[39] Miao J, Wan H, Guan G. Catal. Commun., 2011, 12: 353.
[40] Abu-Reziq R, Wang D, Post M, Alper H. Adv. Syn. Catal., 2007, 349: 2145.
[41] Taher A, Kim J B, Jung J Y, Ahn W S, Jin M J. Synlett, 2009, 2477.
[42] Pourjavadi A, Hosseini S H, Doulabi M, Fakoorpoor S M, Seidi F. ACS Catal., 2012, 2: 1259.
[43] Zhang Q, Su H, Luo J, Wei Y. Green Chem., 2012, 14: 201.
[44] Karimi B, Mansouri F,Vali H. Green Chem., 2014, 16: 2587.
[45] Chen W, Zhang Y, Zhu L, Lan J, Xie R, You J. J. Am. Chem. Soc., 2007, 129: 13879.
[46] Xu Z, Wan H, Miao J, Han M, Yang C, Guan G. J. Mol. Catal. A, 2010, 332: 152.
[47] Kim D W, Chi D Y. Angew. Chem. Int. Ed., 2004, 43: 483.
[48] Kim D W, Hong D J, Jang K S, Chi D Y. Adv. Syn. Catal., 2006, 348: 1719.
[49] Shen Y, Zhang Y, Zhang Q, Niu L, You T, Ivaska A. Chem. Commun., 2005, 4193.
[50] Zhi H, Lü C, Zhang Q, Luo J. Chem. Commun., 2009, 2878.
[51] Su D S, Perathoner S, Centi G. Chem. Rev., 2013, 113: 5782.
[52] Wu B, Hu D, Kuang Y, Liu B, Zhang X, Chen J. Angew. Chem. Int. Ed., 2009, 48: 4751.
[53] Guo S, Dong S, Wang E. Adv. Mater., 2010, 22: 1269.
[54] Park M J, Lee J K, Lee B S, Lee Y W, Choi I S, Lee S G. Chem. Mater., 2006, 18: 1546.
[55] Chun Y S, Shin J Y, Song C E, Lee S G. Chem. Commun., 2008, 942.
[56] Lee J S, Lee T, Song H K, Cho J, Kim B S. Energy. Environ. Sci., 2011, 4: 4148.
[57] Yang M H, Choi B G, Park H, Park T J, Hong W H, Lee S Y. Electroanalysis, 2011, 23: 850.
[58] Li J R, Sculley J, Zhou H C. Chem. Rev., 2011, 112: 869.
[59] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[60] Farrusseng D, Aguado S, Pinel C. Angew. Chem., 2009, 48: 7502.
[61] Borfecchia E, Maurelli S, Gianolio D, Groppo E, Chiesa M, Bonino F, Lamberti C. J. Phys. Chem. C, 2012, 116: 19839.
[62] Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Commun., 2012, 48: 11275.
[63] Chui S S Y, Lo S M F, Charmant J P, Orpen A G, Williams I D. Science, 1999, 283: 1148.
[64] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040.
[65] Park K S, Ni Z, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Pro. Nat. Aca. Sci., 2006, 103: 10186.
[66] Luo Q X, Ji M, Lu M H, Hao C, Qiu J S, Li Y Q. J. Mater. Chem. A, 2013, 1: 6530.
[67] Khan N A, Hasan Z, Jhung S H. Chem. Eur. J., 2014, 20: 376.
[68] Luo Q X, Song X D, Ji M, Park S E, Hao C, Li Y Q. Appl. Catal. A, 2014, 478: 81.

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[7] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[8] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[9] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[13] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[14] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[15] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.