English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1720-1730 DOI: 10.7536/PC140520 前一篇   后一篇

• 综述与评论 •

光控DNA可逆杂交/解链及其应用

寇波1,2, 谈玲华1, 王倡春1, 肖守军*2   

  1. 1. 南京工程学院材料工程学院 江苏省先进结构材料与应用技术重点实验室 南京 211167;
    2. 南京大学化学化工学院 配位化学国家重点实验室 南京微结构国家实验室 南京 210093
  • 收稿日期:2014-05-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 肖守军 E-mail:sjxiao@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 91027019)、 江苏省自然科学基金项目(No.BK20130747)和南京工程学院创新基金重大项目(No. CKJA201302)资助

Reversible Photoregulation of DNA Hybridization/Dissociation and Potential Applications

Kou Bo1,2, Tan Linghua1, Wang Changchun1, Xiao Shoujun*2   

  1. 1. Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
    2. State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2014-05-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 91027019), the Natural Science Foundation of Jiangsu Province (No.BK20130747) and the Important Innovation Foundation of Nanjing Institute of Technology, Jiangsu Province (No. CKJA201302)

通过光敏分子与DNA相互作用,可以实现光控DNA杂交与解链,这种光控DNA有望成为下一代DNA功能构筑材料和纳米机械能量输入模式。本文总结了可逆光控DNA杂交/解链的各种途径及其作用机理,并分析其使用条件和光控效果。已有实验结果的对比和归纳表明,从DNA骨架上楔入含侧链偶氮苯官能团的单元,通过顺反异构实现DNA双链解链与杂交的可逆光控最具应用潜力,并且仍有一定的改进空间。本文介绍了这种骨架楔入偶氮苯光控DNA材料在纳米技术和生物技术方面的应用,并对其进一步的研究方向进行了展望。

With the interaction between photoresponsive molecules and DNA, the reversible switching-modes of DNA hybridization and dissociation were realized by photo irradiation, which would become a new generation of DNA materials for nano-architecture and nano-actuation. We briefly review the recently developed methods to photo-regulate DNA hybridization and dissociation, their switching efficiencies, and their operation/service conditions. Compared with other intercalating and inserting functionalities, inserting wedge type azobenzene by acyclic linker into the DNA backbone is considered as the most favorite approach for potential applications. Interesting application works based on the azobenzene tethered DNA materials in nanotechnology and biotechnology are introduced. In conclusion, an outlook regarding these photo-functional DNA materials and their potential applications is given.

Contents
1 Introduction
2 Reversible photoregulation of DNA hybridization
2.1 Tethering azobenzene by acyclic scaffold
2.2 Additional photoresponsive molecules
2.3 Modification of native bases
2.4 Photoresponsive molecules on the scaffold
3 Comparison of the photoregulation approaches
3.1 Photoregulation efficiency
3.2 Photoregulation power
3.3 Thermal bistability of the photoregulation
3.4 Advices for the photoregulation
4 Azobenzene tethered DNA in nanotechnology
4.1 DNA self-assembly controlled by light-irradiation
4.2 DNA nanomachines powered by light-irradiation
4.3 Other photoresponsive DNA nanomaterials
5 Photoregulation of DNA functions in biotechnology
5.1 Photoregulation of DNAzyme activity
5.2 Photoregulation of DNA translation
5.3 Photoregulation of other DNA functions
6 Conclusion and outlook

中图分类号: 

()

[1] Seeman N C. Nature, 2003, 421(6921): 427.
[2] Bath J, Turberfield A J. Nat. Nanotechnol., 2007, 2(5): 275.
[3] Pinheiro A V, Han D, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6: 763.
[4] Stulz E. Chem-Eur. J., 2012, 18(15): 4456.
[5] Leunissen M E, Dreyfus R, Cheong F C, Grier D G, Sha R, Seeman N C, Chaikin P M. Nat. Mater., 2009, 8(7): 590.
[6] Mognetti B M, Leunissen M E, Frenkel D. Soft Matter., 2012, 8(7): 2213.
[7] Yang Y, Liu G, Liu H, Li D, Fan C, Liu D. Nano Lett., 2010, 10(4): 1393.
[8] Liu D, Balasubramanian S. Angew. Chem. Int. Ed., 2003, 42(46): 5734.
[9] Shu W, Liu D, Watari M, Riener C K, Strunz T, Welland M E, Balasubramanian S, Mckendry R A. J. Am. Chem. Soc., 2005, 127(48): 17054.
[10] Mao C, Sun W, Shen Z, Seeman N C. Nature, 1999, 397(6715): 144.
[11] Lu C, Qi X, Orbach R, Yang H, Mironi-Harpaz I, Seliktar D, Willner I. Nano Lett., 2013, 13: 1298.
[12] Lund K, Manzo A J, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M N, Walter N G, Winfree E, Yan H. Nature, 2010, 465(7295): 206.
[13] Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield A J. Nat. Nanotechnol., 2011, 6(3): 166.
[14] Zhang D Y, Winfree E. J. Am. Chem. Soc., 2009, 131(47): 17303.
[15] Zhang D Y, Seelig G. Nat. Chem., 2011, 3(2): 103.
[16] Gu H Z, Chao J, Xiao S J, Seeman N C. Nat. Nanotechnol., 2009, 4(4): 245.
[17] Gu H Z, Chao J, Xiao S J, Seeman N C. Nature, 2010, 465(7295): 202.
[18] Probst C E, Zrazhevskiy P, Gao X. J. Am. Chem. Soc., 2011, 133(43): 17126.
[19] Li B, Ellington A D, Chen X. Nucleic Acids Res., 2011, 39(16): e110.
[20] Szymanski W, Beierle J M, Kistemaker H A V, Velema W A, Feringa B L. Chem. Rev., 2013, 113(8): 6114.
[21] Kamiya Y, Asanuma H. Accounts Chem. Res., 2014, 47(6): 1663.
[22] Asanuma H, Liang X, Nishioka H, Matsunaga D, Liu M, Komiyama M. Nat. Protoc., 2007, 2(1): 203.
[23] Dohno C, Uno S, Nakatani K. J. Am. Chem. Soc., 2007, 129(39): 11898.
[24] Ogasawara S, Maeda M. Angew. Chem., 2008, 120(46): 8971.
[25] Wang Q, Yi L, Liu L, Zhou C, Xi Z. Tetrahedron Lett., 2008, 49(34): 5087.
[26] He L, Yang X, Wang K, Wang Q, Zhao F, Huang J, Liu J. Chem. Commun., 2014, 50(58): 7803.
[27] Asanuma H, Ito T, Komiyama M. Tetrahedron Lett., 1998, 39(49): 9015.
[28] Asanuma H, Ito T, Yoshida T, Liang X G, Komiyama M. Angew. Chem. Int. Ed., 1999, 38(16): 2393.
[29] Liang X G, Asanuma H, Komiyama M. J. Am. Chem. Soc., 2002, 124(9): 1877.
[30] Liang X G, Asanuma H, Kashida H, Takasu A, Sakamoto T, Kawai G, Komiyama M. J. Am. Chem. Soc., 2003, 125(52): 16408.
[31] Asanuma H, Liang X G, Yoshida T, Komiyama M. ChemBioChem., 2001, 2(1): 39.
[32] Asanuma H, Takarada T, Yoshida T, Tamaru D, Liang X G, Komiyama M. Angew. Chem. Int. Ed., 2001, 40(14): 2671.
[33] Asanuma H, Matsunaga D, Komiyama M. Nucleic Acids Symposium Series. Fukuoka, Japan: Oxford Univ Press, 2005. 35.
[34] Nishioka H, Liang X G, Kashida H, Asanuma H. Chem. Commun., 2007, 4354.
[35] Liang X G, Takenaka N,Nishioka H, Asanuma H. Chem-Asian J., 2008, 3(3): 553.
[36] Nishioka H, Liang X G, Asanuma H. Chem-Eur. J., 2010, 16(7): 2054.
[37] Matsunaga D, Asanuma H, Komiyama M. J. Am. Chem. Soc., 2004, 126(37): 11452.
[38] Kou B, Guo X, Xiao S, Liang X. Small, 2013, 9(23): 3939.
[39] Endo M, Yang Y, Suzuki Y, Hidaka K, Sugiyama H. Angew. Chem. Int. Ed., 2012, 51: 10518.
[40] Yan Y, Wang X, Chen J I, Ginger D S. J. Am. Chem. Soc., 2013, 135: 8382.
[41] Nishioka H, Liang X G, Kato T, Asanuma H. Angew. Chem. Int. Ed., 2012, 51(5): 1165.
[42] Uno S N, Dohno C, Bittermann H, Malinovskii V L, Häner R, Nakatani K. Angew. Chem., 2009, 121(40): 7498.
[43] Wang C, Pu F, Lin Y, Ren J, Dohn C, Nakatani K, Qu X. Chemistry-Eur.J., 2011, 17(29): 8189.
[44] Maie K, Nakamura M, Yamana K. Nucleos. Nucleot. Nucl., 2006, 25(4/6): 453.
[45] Le Ny A M, Lee C T. J. Am. Chem. Soc. 2006, 128(19): 6400.
[46] Estévez-Torres A, Crozatier C, Diguet A, Hara T, Saito H, Yoshikawa K, Baigl D. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(30): 12219.
[47] Diguet A, Mani N K, Geoffroy M, Sollogoub M, Baigl D. Chem-Eur. J., 2010, 16(39): 11890.
[48] Venancio-Marques A, Bergen A, Rossi-Gendron C, Rudiuk S, Baigl D. ACS Nano., 2014, 8(4): 3654.
[49] Wang X, Huang J, Zhou Y, Yan S, Weng X, Wu X, Deng M, Zhou X. Angew. Chem. Int. Ed., 2010, 49(31): 5305.
[50] Liu H, Xu Y, Li F, Yang Y, Wang W, Song Y, Liu D. Angew. Chem. Int. Ed., 2007, 46(14): 2515.
[51] Eom K, Jung H, Lee G, Park J, Nam K, Lee S W, Yoon D S, Yang J, Kwon T. Chem. Commun., 2012, 48(7): 955.
[52] Ogasawara S, Maeda M. Angew. Chem., 2009, 121(36): 6799.
[53] Singer M, Jäschke A. J. Am. Chem. Soc., 2010, 132(24): 8372.
[54] Cahová H, Jäschke A. Angew. Chem. Int. Ed., 2013, 52(11): 3186.
[55] Mori S, Morihiro K, Obika S. Molecules, 2014, 19(4): 5109.
[56] Lewis F D, Liu X. J. Am. Chem. Soc., 1999, 121(50): 11928.
[57] Yamana K, Kan K, Nakano H. Bioorgan. Med. Chem., 1999, 7(12): 2977.
[58] Liang X G, Nishioka H, Takenaka N, Asanuma H. ChemBioChem, 2008, 9(5): 702.
[59] Liang X G, Mochizuki T, Asanuma H. Small, 2009, 5(15): 1761.
[60] Liang X G, Nishioka H, Mochizuki T, Asanuma H. J. Mater. Chem., 2010, 20(3): 575.
[61] Liang X G, Mochizuki T, Fujii T, Kashida H, Asanuma H. Nat. Comput., 2012, 11(2SI): 231.
[62] Asanuma H, Shirasuka K, Yoshida T, Takarada T, Liang X G, Komiyama M. Chem. Lett., 2001(2): 108.
[63] Brieke C, Heckel A. Chem-Eur. J., 2013, 19(46): 15726.
[64] Beyer C, Wagenknecht H. Synlett., 2010, 2010(09): 1371.
[65] Beharry A A, Sadovski O, Woolley G A. J. Am. Chem. Soc., 2011, 133(49): 19684.
[66] Yuan Q, Wu Y, Wang J, Lu D, Zhao Z, Liu T, Zhang X, Tan W. Angew. Chem., 2013, 125(52): 14215.
[67] Seeman N C. J. Theor. Biol., 1982, 99(2): 237.
[68] Winfree E, Liu F, Wenzler L A, Seeman N C. Nature, 1998, 394(6693): 539.
[69] Rothemund P W K. Nature, 2006, 440(7082): 297.
[70] Ogura Y, Nishimura T, Tanida J. Proc. SPIE, 2008, 70390K.
[71] Tanaka F, Mochizuki T, Liang X G, Asanuma H, Tanaka S, Suzuki K, Kitamura S, Nishikawa A, Ui-Tei K, Hagiya M. Nano Lett., 2010, 10(9): 3560.
[72] Yang Y, Endo M, Hidaka K, Sugiyama H. J. Am. Chem. Soc., 2012, 134(51): 20645.
[73] Suzuki Y, Endo M, Yang Y, Sugiyama H. J. Am. Chem. Soc., 2014, 136(5): 1714.
[74] Han D, Huang J, Zhu Z, Yuan Q A, You M X, Chen Y, Tan W H. Chem. Commun., 2011, 47(16): 4670.
[75] Yan Y, Chen J I L, Ginger D S. Nano Lett., 2012, 12(5): 2530.
[76] Hachikubo Y, Iwai S, Uyeda T Q P. Biotechnol. Bioeng., 2010, 106(1): 1.
[77] Liang X, Takenaka N,Nishioka H, Asanuma H. Nucleic Acids Symposium Series. Oxford Univ. Press, 2008. 697.
[78] Kang H Z, Liu H P, Phillips J A, Cao Z H, Kim Y, Chen Y, Yang Z Y, Li J W, Tan W H. Nano Lett., 2009, 9(7): 2690.
[79] Yuan Q, Zhang Y F, Chen Y, Wang R W, Du C L, Yasun E, Tan W H. Proc. Natl. Acad. Sci. U.S.A., 2011, 108(23): 9331.
[80] Lohmann F, Ackermann D, Famulok M. J. Am. Chem. Soc., 2012, 134(29): 11884.
[81] You M X, Huang F J, Chen Z, Wang R W, Tan W H. ACS Nano, 2012, 6(9): 7935.
[82] Wen Y, Xu L, Wang W, Wang D, Du H, Zhang X. Nanoscale, 2012, 4(15): 4473.
[83] Yuan Q, Zhang Y F, Chen T, Lu D Q, Zhao Z L, Zhang X B, Li Z X, Yan C H, Tan W H. ACS Nano, 2012, 6(7): 6337.
[84] Kang H Z, Liu H P, Zhang X L, Yan J L, Zhu Z, Peng L, Yang H H, Kim Y M, Tan W H. Langmuir, 2011, 27(1): 399.
[85] Peng L, You M X, Yuan Q, Wu C C, Han D, Chen Y, Zhong Z H, Xue J G, Tan W H. J. Am. Chem. Soc., 2012, 134(29): 12302.
[86] Liu Y, Sen D. J. Mol. Biol., 2004, 341(4): 887.
[87] Zhou M G, Liang X G, Mochizuki T, Asanuma H. Angew. Chem. Int. Ed., 2010, 49(12): 2167.
[88] Liang X, Zhou M, Kato K, Asanuma H. ACS Synth. Biol., 2013, 2(4): 194.
[89] Zou Y, Chen J, Zhu Z, Lu L, Huang Y, Song Y, Zhang H, Kang H, Yang C J. Chem. Commun., 2013, 49(77): 8716.
[90] Kashida H, Liang X G, Asanuma H. Curr. Org. Chem., 2009, 13(11): 1065.
[91] Liu M Z, Tamaru D, Asanuma H, Komiyama M. Chem. Lett., 2003, 32(12): 1174.
[92] Asanuma H, Tamaru D, Yamazawa A, Liu M Z, Komiyama M. ChemBioChem, 2002, 3(8): 786.
[93] Liu M Z, Asanuma H, Komiyama M. J. Am. Chem. Soc., 2006, 128(3): 1009.
[94] Liang X G, Wakuda R, Fujioka K, Asanuma H. FEBS J., 2010, 277(6): 1551.
[95] Yamazawa A, Liang X G, Asanuma H, Komiyama M. Angew. Chem. Int. Ed., 2000, 39(13): 2356.
[96] Liang X G, Fujioka K, Asanuma H. Chem-Eur. J., 2011, 17(37): 10388.
[97] Kim Y M, Phillips J A, Liu H P, Kang H Z, Tan W H. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(16): 6489.
[98] You M X, Wang R W, Zhang X B, Chen Y, Wang K L, Peng L, Tan W H. ACS Nano, 2011, 5(12): 10090.

[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[4] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[5] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[8] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[9] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[10] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[11] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[12] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[13] 程熙萌, 张庆瑞. 功能蛋白纳米材料在环境保护中的应用[J]. 化学进展, 2021, 33(4): 678-688.
[14] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[15] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
阅读次数
全文


摘要

光控DNA可逆杂交/解链及其应用