English
新闻公告
More
化学进展 2013, Vol. 25 Issue (12): 2131-2146 DOI: 10.7536/PC130506 前一篇   后一篇

• 综述与评论 •

氰根离子比色、荧光传感器研究新进展

林奇*, 刘昕, 陈佩, 魏太保, 张有明*   

  1. 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料重点实验室 兰州 730070
  • 收稿日期:2013-05-01 修回日期:2013-07-01 出版日期:2013-12-15 发布日期:2013-09-17
  • 通讯作者: 林奇,张有明 E-mail:linqi2004@126.com;zhangnwnu@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21064006,21161018,21262032);甘肃省自然科学基金项目(No.1010RJZA018)和教育部长江学者和创新团队发展计划(IRT1177)资助

Colorimetric and Fluorescent Cyanide Anion Sensors

Lin Qi*, Liu Xin, Chen Pei, Wei Taibao, Zhang Youming*   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2013-05-01 Revised:2013-07-01 Online:2013-12-15 Published:2013-09-17

由于具有很强的毒性,氰根离子的识别与检测在生命科学、环境科学等领域具有重要的意义。在众多的氰根离子检测方法中,基于主客体作用的氰根离子比色、荧光传感器由于其方法简单和灵敏度高、操作简便、成本较低等优点,逐渐成为人们关注的焦点。本文综述了2006年以来的氰根离子比色、荧光传感器的研究进展。根据传感器分子与氰根离子作用方式的不同,本文将氰根离子传感器分为6类:(1)氢键作用型氰根离子传感器。此类传感器分子通过氢键作用结合氰根离子从而实现对氰根离子的识别。(2)脱质子型氰根离子传感器。此类传感器分子通过氰根离子夺取传感器分子中的活泼氢,导致传感器分子发生分子内电子转移,从而实现对氰根离子的识别。(3)加成反应型氰根离子传感器。此类传感器分子通过与氰根离子发生特定的反应而实现对氰根离子的识别,根据具体反应类型的不同,又将其分成了5小类进行总结和阐述。(4)配位作用型氰根离子传感器。此类传感器分子为金属配合物,氰根离子与传感器分子上的金属离子通过配位作用结合或者氰根离子竞争夺取传感器分子中的金属离子,从而实现对氰根离子的识别。(5)基于纳米技术的氰根离子传感器。(6)基于其他机理的氰根离子传感器。本文对这些类型的氰根离子传感器从设计原理、识别性能和机理等方面进行了介绍,并展望了该领域的研究方向。

Because of the extreme toxicity of cyanide anions, the development of colorimetric and fluorescent sensors for the cyanide anion (CN-) has received considerable attention. Among numerous CN- sensors, the colorimetric or fluorescent sensors received more and more attention because these kinds of sensors possess a lot of advantages such as high sensitivity, does not require expensive equipment and easy to operate. This review article highlights advances in the research of colorimetric or fluorescent sensors for the cyanide anion after 2006. According to recognition mechanisms of these sensors, we grouped them into six categories, including hydrogen bond based CN- sensors, deprotonation based CN- sensors, addition reaction based CN- sensors, coordination based sensors, nano-material based CN- sensors, and the sensors based on other recognition mechanism. This review summarizes the main design principles, CN- recognition abilities of the sensors. The developing orientation for further research is presented.

Contents
1 Introduction
2 Design principles of colorimetric and fluorescent CN-sensors
3 Hydrogen bond based CN-sensors
4 Deprotonation based CN-sensors
5 Addition reaction based CN-sensors
5.1 Addition of CN-to alkene
5.2 Addition of CN-to boride
5.3 Addition of CN-to Schiff base
5.4 Addition of CN-to spiro-compound
5.5 Addition of CN-to carbonyl group
6 Coordination based CN-sensors
6.1 Direct coordination
6.2 Competitive coordination
7 Nano-material based CN-sensors
8 Sensors based on other recognition mechanism
9 Conclusion and outlook

中图分类号: 

()

[1] Holland M A, Kozlowski L M. Clinical Pharmacy, 1986, 5: 737—741
[2] Koening R. Science, 2000, 287: 1737—1738
[3] Young C, Tidwell L, Anderson C. Cyanide: Social, Industrial, and Economic Aspects. Warrendale: Minerals, Metals, and Materials Society, 2001
[4] Baud F J. Hum. Exp. Toxicol., 2007, 26: 191—201
[5] Guidelines for Drinking-Water Quality. Geneva: World Health Organization, 1996
[6] Way J L. Annu. Rev. Pharmacol., 1984, 24: 451-481
[7] Anderson R A, Harland W A. Med. Sci. Law, 1982, 22: 35—40
[8] Zamecnik J, Tam J J. Anal. Toxicol., 1987, 11: 47—48
[9] Bark L S, Higson H G. Analyst, 1963, 88: 751—760
[10] Barnes D E, Wright P J, Graham S M, Jones-Watson E A. Geostand. Geoanal. Res., 2000, 24: 183—195
[11] Chattaraj S, Das A K. Analyst, 1991, 116: 739—741
[12] Yen S, Wang C T, Wang J S. Chem. Engin. Commun., 1991, 109: 167—180
[13] Xu Z, Chen X, Kim H N, Yoon J. Chem. Soc. Rev., 2010, 39: 127—137
[14] Du J, Hu M, Fan J, Peng X. Chem. Soc. Rev., 2012, 41: 4511—4535
[15] Yang Y, Zhao Q, Feng W, Li F. Chem. Rev., 2013, 113: 192—270
[16] Lin Q, Fu Y P, Chen P, Wei T B, Zhang Y M. Dyes Pigments, 2013, 96: 1—6
[17] Zhang Y M, Lin Q, Wei T B, Li Y, Qin X P. Chem. Commun., 2009, 6074—6076
[18] Zhang Y M, Lin Q, Wei T B, Wang D D. Sens. Actuators B, 2009, 137: 447—455
[19] Bianchi A, Bowman J K, Garcia E E. Supramolecular Chemistry of Anions. New York: Wiley-VCH, 1997
[20] Liu J, Liu Y, Liu Q, Li C, Sun L, Li F. J. Am. Chem. Soc., 2011, 133: 15276—15279
[21] Reddy G U, Das P, Saha S, Baidya M, Ghosh S K, Das A. Chem. Commun., 2013, 49: 255—257
[22] Jo J, Lee D. J. Am. Chem. Soc., 2009, 131: 16283—16291
[23] Mo H J, Shen Y, Ye B H. Inorg. Chem., 2012, 51: 7174—7184
[24] Zhou D, Boon E M. J. Am. Chem. Soc., 2010, 132: 11496-11503
[25] Cho D G, Kim J H, Sessler J L. J. Am. Chem. Soc., 2008, 130: 12163—12167
[26] McDonagh C, Burke C S, MacCraith B D. Chem. Rev., 2008, 108: 400—422
[27] Chen X Q, Pradhan T, Wang F, Kim J S, Yoon J. Chem. Rev., 2012, 112: 1910—1956
[28] Lin Q, Chen P, Fu Y P, Zhang Y M, Shi B B, Zhang P, Wei T B. Chin. Chem. Lett., 2013, 24(8): 699—702
[29] Saha S, Ghosh A, Mahato P, Mishra S, Mishra S K, Suresh E, Das S, Das A. Org. Lett., 2010, 12: 3406—3409
[30] Kumar V, Kaushik M P, Srivastava A K, Pratap A, Thiruvenkatam V, Row T N. Anal. Chim. Acta, 2010, 663: 77—84
[31] Shahid M, Razi S S, Srivastava P, Ali R, Maiti B, Misra A. Tetrahedron, 2012, 68: 9076—9084
[32] Odago M O, Colabello D M, Lees A J. Tetrahedron, 2010, 66: 7465—7471
[33] Kumari N, Jha S, Bhattacharya S. J. Org. Chem., 2011, 76: 8215—8222
[34] Yao L M, Zhou J, Liu J L, Feng W, Li F Y. Adv. Funct. Mater., 2012, 22: 2667—2672
[35] Kumari N, Jha S, Bhattacharya S. Chem. Asian J., 2012, 7: 2805—2812
[36] Suna Y, Chena H H, Cao D X, Liu Z Q, Che H Y, Deng Y L, Fang Q. J. Photochem. Photobiol. A, 2012, 244: 65—70
[37] Yuan L, Lin W Y, Yang Y, Song J Z, Wang J L. Org. Lett., 2011, 13: 3730—3733
[38] Zhou X S, Lv X, Hao J S, Liu D S, Guo W. Dyes Pigments, 2012, 95: 168—173
[39] Lou B, Chen Z Q, Bian Z Q, Huang C H. New J. Chem., 2010, 34: 132—136
[40] Liu Z P, Wang X Q, Yang Z H, He W J. J. Org. Chem., 2011, 76: 10286—10290
[41] Wu X F, Xu B W, Tong H, Wang L X. Macromolecules, 2011, 44: 4241—4248
[42] Fu G L, Zhao C H. Tetrahedron, 2013, 69: 1700—1704
[43] 林奇(Lin Q), 符永鹏(Fu Y P), 张有明(Zhang Y M), 魏太保(Wei T B), 陈佩(Chen P), 朱鑫(Zhu X). CN102863406A, 2013
[44] Yang L, Li X, Yang J B, Qu Y, Hua J L. Appl. Mater. Interfaces, 2013, 5: 1317—1326
[45] Fillaut J L, Akdas-Kilig H, Dean E, Latouche C, Boucekkine A. Inorg. Chem., 2013, 52: 4890—4897
[46] Dong M, Peng Y, Dong Y M, Tang N, Wang Y W. Org. Lett., 2012, 14: 130—133
[47] Kim G J, Kim H J. Tetrahedron Letters, 2010, 51: 185—187
[48] Kim G J, Kim H J. Tetrahedron Letters, 2010, 51: 2914—2916
[49] Niu H T, Jiang X L, He J Q, Cheng J P. Tetrahedron Letters, 2009, 50: 6668—6671
[50] Kim Y M, Zhao H Y, Gabbai F P. Angew. Chem. Int. Ed., 2009, 48: 4957—4960
[51] Kim Y M, Huh H S, Lee M H, Lenov I L, Zhao Y, Gabbai F P. Chem. Eur. J., 2011, 17: 2057—2062
[52] Guliyev R, Ozturk S, Sahin E, Akkaya E U. Org. Lett., 2012, 14: 1528—1531
[53] Chaicham A, Kulchat S, Tumcharern G, Tuntulani T, Tomapatanaget B. Tetrahedron, 2010, 66: 6217—6223
[54] Palomares B E, Martínez-Díaz M V, Torres T, Coronado E. Adv. Funct. Mater., 2006, 16: 1166—1170
[55] Yoshino J, Kano N, Kawashima T. J. Org. Chem., 2009, 74: 7496—7503
[56] Sun Y, Liu Y L, Guo W. Sens. Actuators B, 2009, 143: 171—176
[57] Sun Y, Liu Y L, Chen M L, Guo W. Talanta, 2009, 80: 996—1000
[58] Shiraishi Y, Adachi K, Itoh M, Hirai T. Org. Lett., 2009, 11: 3482—3485
[59] Zhu S Y, Li M J, Sheng L, Chen P, Zhang Y, Zhang S X A. Analyst, 2012, 137: 5581—5585
[60] Ren J Q, Zhu W H, Tian H. Talanta, 2008, 75: 760—764
[61] Shiraishi Y, Itoh M, Hirai T. Tetrahedron Letters, 2011, 52: 1515—1519
[62] Ekmekci Z, Yilmaz M D, Akkaya E U. Org. Lett., 2008, 10: 461—464
[63] Lv X, Liu J, Liu Y L, Zhao Y, Chen M L, Wang P, Guo W. Sens. Actuators B, 2011, 158: 405—410
[64] Li H D, Li B, Jin L Y, Kan Y H, Yin B Z. Tetrahedron, 2011, 67: 7348—7353
[65] Kwona S K, Kou S Z, Kim H N, Chen X Q, Hwang H, Nama S W, Kim S H, Swamy K M, Park S S, Yoon J Y. Tetrahedron Letters, 2008, 49: 4102—4105
[66] Lee K S, Kim H J, Kim G H, Shin I, Hong J I. Org. Lett., 2008, 10: 49—51
[67] Chung Y M, Raman B, Kim D S, Ahn K H. Chem. Commun., 2006, 186—188
[68] Jo J, Olasz A, Chen C H, Lee D. J. Am. Chem. Soc., 2013, 135: 3620—3632
[69] Duan Y L, Zheng Y S. Talanta, 2013, 107: 332—337
[70] Lee J H, Jeong A, Shin I S, Kim H J, Hong J I. Org. Lett., 2010, 12: 764—767
[71] Zelder F H. Inorg. Chem., 2008, 47: 1264—1266
[72] Männel-Croisé C, Zelder F H. Inorg. Chem., 2009, 48: 1272—1274
[73] Wang J, Ha C S. Tetrahedron, 2010, 66: 1846—1851
[74] Tang L J, Cai M J. Sens. Actuators B, 2012, 173: 862— 867
[75] Jung H S, Han J H, Kim Z H, Kang C H, Kim J S. Org. Lett., 2011, 13: 5056—5059
[76] Guliyev R, Buyukcakir O, Sozmen F, Bozdemir O A. Tetrahedron Letters, 2009, 50: 5139—5141
[77] Xu Z C, Pan J, Spring D R, Cui J N, Yoon J Y. Tetrahedron, 2010, 66: 1678—1683
[78] Yang R, Wu W B, Wang W Y, Li Z, Qin J G. Macromol. Chem. Phys., 2010, 211: 18—26
[79] Chen X Q, Nam S W, Kim G H, Song N, Jeong Y, Shin I, Kim S K, Kim J H, Park S S, Yoon J. Chem. Commun., 2010, 46: 8953—8955
[80] Lou X D, Qiang L, Qin J G, Li Z. ACS Appl. Mater. Interfaces, 2009, 1: 2529—2535
[81] Lou X D, Qin J G, Li Z. Analyst, 2009, 134: 2071—2075
[82] Guo Y Y, Tang X L, Hou F P, Wu J, Dou W, Qin W W, Ru J X, Zhang G L, Liu W S, Yao X J. Sens. Actuators B, 2013, 181: 202— 208
[83] Kim M H, Kim S, Jang H H, Yi S J, Seo S H, Han M S. Tetrahedron Letters, 2010, 51: 4712—4716
[84] Lou X D, Zhang Y, Qin J G, Li Z. Chem. Eur. J., 2011, 17: 9691—9696
[85] Liu J, Liu Y, Li C, Sun L, Li F. J. Am. Chem. Soc., 2011, 133: 15276—15279
[86] Ajayakumar M R, Mukhopadhyay P. Org. Lett., 2010, 12: 2646—2649

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[6] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[9] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[13] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[14] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[15] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.