English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 593-608 DOI: 10.7536/PC210340 前一篇   后一篇

• 综述 •

分子印迹荧光传感构建及应用

田浩1,2, 李子木1,2, 汪长征1,*(), 许萍1, 徐守芳2,*()   

  1. 1 北京建筑大学城市雨水系统与水环境教育部重点实验室 北京 100044
    2 临沂大学材料科学与工程学院功能高分子实验室 临沂 276005
  • 收稿日期:2021-03-23 修回日期:2021-05-22 出版日期:2022-07-29 发布日期:2021-07-29
  • 通讯作者: 汪长征, 徐守芳
  • 基金资助:
    国家自然科学基金项目(21777065); 山东省高等学校青年创新团队(2019KJA021); 山东省自然科学基金(ZR2020KE002)

Construction and Application of Molecularly Imprinted Fluorescence Sensor

Hao Tian1,2, Zimu Li1,2, Changzheng Wang1(), Ping Xu1, Shoufang Xu2()   

  1. 1 Key Laboratory of Urban Storm Water System and Water Environment, Beijing University of Civil Engineering and Architecture,Beijing 100044, China
    2 Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University,Linyi 276005, China
  • Received:2021-03-23 Revised:2021-05-22 Online:2022-07-29 Published:2021-07-29
  • Contact: Changzheng Wang, Shoufang Xu
  • Supported by:
    National Natural Science Foundation of China(21777065); Youth Innovation Project for Colleges of Shandong Province(2019KJA021); Natural Science Foundation of Shandong Province(ZR2020KE002)

构建一个高灵敏、高选择性检测痕量分析物的传感器广受科研工作者关注。分子印迹技术由于具有高选择性识别、高容量吸附、快速结合、热稳定性以及低成本等优点,已广泛应用于传感构建领域。以分子印迹聚合物为识别单元,结合荧光传感技术所构建的分子印迹荧光传感器在环境污染物痕量检测方面成为研究重点。本文主要介绍分子印迹聚合物的制备方法,总结分子印迹荧光传感器的构建机理和分子印迹荧光传感器在金属离子、有机小分子以及生物大分子检测方面的应用。重点探讨分子印迹传感器在不同数量的荧光团下检测一种或多种目标分析物的方法,包括单一荧光团检测单一目标物、比率荧光检测单一目标物以及分子印迹荧光传感的多元检测。基于以上分析和总结,提出分子印迹荧光传感器的当前挑战和发展前景。

The construction of a highly sensitive, highly selective sensor for detecting trace analytes has received wide attention from scientific researchers. Molecularly imprinted technology has been widely used in the field of sensor construction due to its highly selective recognition, high-capacity adsorption, fast binding, thermal stability, and low cost. The molecularly imprinted fluorescent sensor constructed with molecularly imprinted polymer as the identification unit combined with fluorescent sensing technology has become a research focus in the detection of environmental pollutants traces. This article mainly introduces the preparation methods of molecularly imprinted polymers. The construction mechanism of molecularly imprinted fluorescent sensors and the application of molecularly imprinted fluorescent sensors in the detection of metal ions, small organic molecules, and biomacromolecules are summarized. The molecularly imprinted sensors to detect one or more target analytes under different numbers of fluorophores are elaborated, including single-target single-fluorophore detection, single-target ratiometric fluorescence detection, and multiplex detection with molecularly imprinted fluorescence sensor. Finally, the current challenges of molecularly imprinted fluorescent sensors and the prospects of molecularly imprinted fluorescent sensors are proposed to accelerate the development of molecularly imprinted fluorescent sensors and to further develop multifunctional molecularly imprinted fluorescent sensors with a wide range of applications.

Contents

1 Introduction

2 Fluorescence sensing principle and fluorophore type

3 Construction of molecularly imprinted fluorescence sensor

3.1 Molecularly imprinted single emission fluorescence detection

3.2 Molecular imprinting ratiometric fluorescence detection

3.3 Molecularly imprinted multiplex fluorescence detection

4 Application of molecularly imprinted fluorescence sensor

4.1 Detection of metal ions

4.2 Detection of small organic molecules

4.3 Detection of biomacromolecules

5 Conclusion and outlook

()
图1 分子印迹聚合物制备原理[3]
Fig.1 Preparation principle of molecularly imprinted polymers. Copyright 2006, John Wiley and Sons[3]
表1 不同制备分子印迹聚合物方法的优缺点比较
Table 1 Comparison of advantages and disadvantages of different methods for preparing molecularly imprinted polymers
图2 荧光纳米颗粒掺杂到不同形貌的分子印迹聚合物中所制备的分子印迹荧光传感器:(A)实心均质;(B)介孔均质;(C)核壳结构;(D)空心介孔结构;(E)核壳介孔结构
Fig.2 Molecularly imprinted fluorescent sensors prepared by doping fluorescent nanoparticles into molecularly imprinted polymers with different morphologies: (A) solid homogeneous; (B) mesoporous homogeneous; (C) core-shell structure; (D) hollow mesoporous structure; (E) core-shell mesoporous structure
图3 基于硼酸酯亲合力夹心法测定和纳米粒子信号放大的“信号开”荧光传感器的制备过程,以及对HRP检测的示意图[82]
Fig.3 Schematic illustration of the preparation of turn-on MIFS and detection of HRP based on boranate affinity sandwich assay and nanoparticle signal amplification[82]. Copyright 2020, Elsevier
图4 具有参比信号的介孔结构的比率分子印迹荧光传感器的制备过程,以及与目标分析物结合时相应的荧光颜色变化:(A)红色和绿色碲化镉QDs为比率荧光团[90];(B)碲化镉QDs为靶标敏感荧光团,血卟啉为参比荧光团[92]
Fig.4 The preparation process of a ratiometric molecularly imprinted fluorescence sensor with a mesoporous structure with a reference signal, and the corresponding fluorescence color change when the target analyte is recombined. (A) Red and green cadmium telluride quantum dots are ratiometric fluorophores[90]. Copyright 2015, Royal Society of Chemistry. (B) Cadmium telluride quantum dots are the target sensitive fluorophores, and hematoporphyrin is the reference fluorophores[92]. Copyright 2015, Elsevier
图5 具有两个可逆信号的介孔结构的比率分子印迹荧光传感器的制备过程,以及目标分析物重新结合时相应的荧光颜色变化:(A)金纳米颗粒和CDs为比率荧光团[94];(B)CDs和QDs为比率荧光团[95]
Fig.5 The preparation process of a ratiometric molecularly imprinted fluorescence sensor with two reversible signals of mesoporous structure, and the corresponding fluorescence color change when the target analyte is recombined. (A) Gold nanoparticles and carbon dots are ratiometric fluorophores[94]. Copyright 2017, Elsevier. (B) Carbon dots and quantum dots are ratio fluorophores[95]. Copyright 2019, Royal Society of Chemistry
图6 三元检测示意图:荧光颜色表现出黄绿色-黄色-紫色-蓝色的荧光色演变,从而可以肉眼可视化检测BHb[96]
Fig.6 Schematic diagram of ternary detection. The fluorescent color shows the evolution of yellow-green-yellow-purple-blue fluorescence color, which can visually detect BHb with the naked eye[96]. Copyright 2019, American Chemical Society
图7 双参比离子印迹比率荧光传感器的制备以及 Pb2+和Ag+检测的响应机制示意图。在预聚合中,CDs与Ag+混合,而Au NCs与Pb2+混合,形成官能团-模板离子螯合物[104]
Fig.7 The preparation of the dual-reference ion imprinting ratiometric fluorescence sensor and the schematic diagram of the response mechanism of Pb2+ and Ag+ detection. In the pre-polymerization process, CDs are mixed with Ag+, while Au NCs are mixed with Pb2+ to form a functional group-template ion chelate[104]. Copyright 2019, Elsevier
图8 蓝色和红色CDs双通道检测Cr3+和 Pb2+[106]
Fig.8 Two-channel detection of Cr3+ and Pb2+ with blue and red carbon dots[106]. Copyright 2019, American Chemical Society
表2 分子印迹荧光传感器在不同领域检测中的应用
Table 2 Application of molecularly imprinted fluorescence sensors in detection of different fields
Detection field Fluorescent material Sensor type Target substance Detection matrix Linear range Detection limit ref
Metal ion CDs, Au NCs Double reference
type
Pb2+, Ag+ Real water 50 ~ 900 nmol/L
0.2 ~ 12.5 nmol/L
26 nmol/L
86 nmol/L
104
Amino modified CDs, carboxyl modified CDs Double reference
type
Cu2+, Fe3+ Real water 0.5 ~ 50 μmol/L
1 ~ 100 μmol/L
130 nmol/L
340 nmol/L
105
ZnSe QDs Microfluidic paper
chip
Cd2+, Pb2+ Real water 1 ~ 70 μg/L
1 ~ 60 μg/L
0.245 μg/L
0.335 μg/L
103
Blue and red CDs Two-channel detection Cr3+, Pb2+ Real water 0.1 ~ 6.0 μmol/L
0.1 ~ 5.0 μmol/L
27 nmol/L
34 nmol/L
106
Blue and red CDs Two-channel detection Cr6+, Cr3+ Real water 0.01 ~ 10.0 μmol/L
0.1 ~ 15.0 μmol/L
3.8 nmol/L
46 nmol/L
107
CdTe QDs Microfluidic paper
chip
Cu2+, Hg2+ Real water 0.11 ~ 58.0 μg/L
0.26 ~ 34.0 μg/L
0.035 μg/L
0.056 μg/L
101
CQDs Single emission
quenching
Cu2+ Tap Water 0.25 ~ 2 mg /L
3 ~ 10 mg /L
2.86μmol/L 109
Organic molecules CQDs, CdTe QDs Ratiometric type Dopamine Human serum 0.2853~ 5 μmol/L 0.2853μmol/L 110
3-(anthracen-9-
ylmethyl)-1-vinyl-1H-
imidazol-3-ium chloride
Single emission
quenching
P-nitroaniline Wastewater 10-8 ~ 10 mol/L 9 nmol/L 111
ZnS QDs Single emission
quenching
Sparfloxacin Biological serum 0.05~ 2.0 μg/mL 0.012 μg/mL 112
Nitrogen-doped CDs Single emission
quenching
Aspirin Human urine and saliva 0.9~ 9.0 mg/L 0.198 mg/L 113
CQDs Single emission
quenching
Tetracycline Real water 1.0 ~ 60 μmol/L 0.17 μmol/L 114
Calcium fluoride CDs Ratiometric type 5-Hydroxymethyl-
furfural
Honey 0.1~ 6.0 μg/mL 0.043 μg/mL 115
CQDs, CdTe QDs Ratiometric type Sulfadiazine Real water
and milk
0.25~ 20 μmol/L 0.042 μmol/L 116
Biomacromolecule ATTO 647N Signal amplification Porcine serum
albumin
Porcine serum 0.25~ 5 nmol/L 40 pmol/L 117
Cadmium telluride QDs Single emission
quenching
Myoglobin Human serum 7.39 ~ 291.3 pg/mL 3.08 pg/mL 118
Silanized CDs Single emission
quenching
Bovine hemoglobin Bovine serum 0.31~ 1.55μmol/L 1.55μmol/L 119
ZnS QDs Single emission
quenching
Lysozyme Real biologic
sample
0.1 ~ 1μmol/L 10.2 nmol/L 120
CdTe QDs Single emission
quenching
Myoglobin Human serum 0.304 ~ 571 pg/mL 0.045 pg/mL 121
Green and red
CdTe QDs
Ratiometric type Bovine hemoglobin Bovine urine 0.050 ~ 3.0μmol/L 9.6 nmol/L 93
Tetra(4-
carboxyphenyl)
porphyrin
Signal amplification Horseradish peroxidase Urine 10-4 ~ 10 mg/L 0.042 μg/L 82
Phycocyanin and CdTe QDs Ratiometric type Phycocyanin Seawater 0 ~ 1.8 μmol/L 3.2 nmol/L 122
[1]
Chen L X, Wang X Y, Lu W H, Wu X Q, Li J H. Chem. Soc. Rev., 2016, 45(8): 2137.

doi: 10.1039/C6CS00061D     URL    
[2]
BelBruno J J. Chem. Rev., 2019, 119(1): 94.

doi: 10.1021/acs.chemrev.8b00171     pmid: 30246529
[3]
Alexander C, Andersson H S, Andersson L I, Ansell R J, Kirsch N, Nicholls I A, O'Mahony J, Whitcombe M J. J. Mol. Recognit., 2006, 19(2): 106.

doi: 10.1002/jmr.760     URL    
[4]
Cheng W, Zeng X W, Chen H Z, Li Z M, Zeng W F, Mei L, Zhao Y L. ACS Nano, 2019, 13(8): 8537.

doi: 10.1021/acsnano.9b04436     URL    
[5]
Fu K X, Zhang R L, He J C, Bai H P, Zhang G L. Biosens. Bioelectron., 2019, 143: 111636.

doi: 10.1016/j.bios.2019.111636     URL    
[6]
de Rycke E, Trynda A, Jaworowicz M, Dubruel P, de Saeger S, Beloglazova N. Biosens. Bioelectron., 2021, 172: 112773.

doi: 10.1016/j.bios.2020.112773     URL    
[7]
Yu C L, Shan J H, Chen Y, Shao J T, Zhang F A. Mater. Today Commun., 2020, 24: 101076.
[8]
Amaly N, Istamboulie G, El-Moghazy A Y, Noguer T. J. Chem. Res., 2021, 45(1/2): 102.

doi: 10.1177/1747519820925998     URL    
[9]
Sun Y H, Yao C, Xie Z X, Zhang Y G. Colloids Surf. B: Biointerfaces, 2021, 197: 111446.

doi: 10.1016/j.colsurfb.2020.111446     URL    
[10]
Li Z Z, Chen X J, Zhang X W, Wang Y, Li D M, Gao H L, Duan X. Food Chem., 2021, 347: 129054.

doi: 10.1016/j.foodchem.2021.129054     URL    
[11]
Xu S J, Zou Y W, Zhang H Q. Talanta, 2020, 211: 120711.

doi: 10.1016/j.talanta.2020.120711     URL    
[12]
Shirani M P, Rezaei B, Ensafi A A, Ramezani M. Food Chem., 2021, 339: 127920.

doi: 10.1016/j.foodchem.2020.127920     URL    
[13]
Qi J F, Tan D, Wang X J, Ma H T, Wan Y C, Hu A, Li L H, Xiao B, Lu B. Sens. Actuat. B: Chem., 2021, 337: 129760.

doi: 10.1016/j.snb.2021.129760     URL    
[14]
Zhou T, Ding L, Che G B, Jiang W, Sang L. Trac Trends Anal. Chem., 2019, 114: 11.

doi: 10.1016/j.trac.2019.02.028     URL    
[15]
Xie X W, Ma X G, Guo L H. Prog. Chem., 2019, 31(12): 1749.
(谢晓纹, 马晓国, 郭丽慧. 化学进展, 2019, 31(12): 1749.).

doi: 10.7536/PC190529    
[16]
Liu H C. Doctoral Dissertation of Jilin University, 2020.
(刘浩驰. 吉林大学博士论文, 2020.).
[17]
Ren X H, Wang H Y, Li S, He X W, Li W Y, Zhang Y K. Talanta, 2021, 223: 121706.

doi: 10.1016/j.talanta.2020.121706     URL    
[18]
Long R Q, Li T, Tong C Y, Wu L H, Shi S Y. Talanta, 2019, 196: 579.

doi: 10.1016/j.talanta.2019.01.007     URL    
[19]
Mori K, Hirase M, Morishige T, Takano E, Sunayama H, Kitayama Y, Inubushi S, Sasaki R, Yashiro M, Takeuchi T. Angew. Chem. Int. Ed., 2019, 58(6): 1522.

doi: 10.1002/anie.201814225     URL    
[20]
Almotiri R A, Ham K J, Vijayan V M, Catledge S A. Materials, 2019, 12(13): 2097.

doi: 10.3390/ma12132097     URL    
[21]
Gao L X, Deng C C, Xiong J, Zhu P P, Chen Q, Tan K J. Microchem. J., 2019, 150: 104096.

doi: 10.1016/j.microc.2019.104096     URL    
[22]
Zhang L B, Wang E K. Nano Today, 2014, 9(1): 132.

doi: 10.1016/j.nantod.2014.02.010     URL    
[23]
Fereja S L, Fang Z Y, Li P, Guo J H, Fereja T H, Chen W. Anal. Bioanal. Chem., 2021, 413(6): 1639.

doi: 10.1007/s00216-020-03126-1     URL    
[24]
Suber L, Pilloni L, Khanna K, Righi G, Primitivo L, de Angelis M, Caschera D. J. Nanosci. Nanotechnol., 2021, 21(5): 2816.

doi: 10.1166/jnn.2021.19048     URL    
[25]
An Y, Ren Y, Michael B, Aleksandra D, Ethan H W, Tang J, Chen J, Chang B S. Biosens. Bioelectron., 2020, 154: 112078.

doi: 10.1016/j.bios.2020.112078     URL    
[26]
Tanaka S I, Wadati H, Sato K, Yasuda H, Niioka H. ACS Omega, 2020, 5(37): 23718.

doi: 10.1021/acsomega.0c02578     URL    
[27]
Yuan L L, Niu Y S, Li R G, Zheng L H, Wang Y, Liu M L, Xu G F, Huang L, Xu Y H. J. Mater. Chem. B, 2018, 6(20): 3240.

doi: 10.1039/C8TB00475G     URL    
[28]
Zhao Z Y, Li Y T. Colloids Surf. B., 2020, 159: 111244.
[29]
Zhao Y, Zhou H M, Zhang S J, Xu J H. Methods Appl. Fluoresc., 2019, 8(1): 012001.

doi: 10.1088/2050-6120/ab57e7     URL    
[30]
Sun A L, Chai J Y, Xiao T T, Shi X Z, Li X J, Zhao Q L, Li D X, Chen J. Sens. Actuat. B: Chem., 2018, 258: 408.

doi: 10.1016/j.snb.2017.11.143     URL    
[31]
Turkie N S, Munshid H Q. J. Glob. Pharm. Technol., 2019, 11(3): 161.
[32]
Daly B, Ling J, de Silva A P. Chem. Soc. Rev., 2015, 44(13): 4203.

doi: 10.1039/C4CS00334A     URL    
[33]
Zhao Y N, Zou S Y, Huo D Q, Hou C J, Yang M, Li J J, Bian M H. Anal. Chimica Acta, 2019, 1047: 179.

doi: 10.1016/j.aca.2018.10.005     URL    
[34]
Chen K, Zhang W T, Zhang Y H, Huang L J, Wang R, Wang J L. Sens. Actuators B Chem., 2018, 259: 717.

doi: 10.1016/j.snb.2017.12.116     URL    
[35]
Sun S C, Lee C C, Chuang M C. Anal. Chimica Acta, 2018, 1030: 148.

doi: 10.1016/j.aca.2018.05.006     URL    
[36]
Daisuke J, Kazuki O, Keiichi I, Yousuke O. Mater. Adv., 2020, 1(3): 354.
[37]
McLaughlin B, Surender E M, Wright G D, Daly B, de Silva A P. Chem. Commun., 2018, 54(11): 1319.

doi: 10.1039/C7CC05929A     URL    
[38]
Zhang J Y, Zhou R H, Tang D D, Hou X D, Wu P. Trends Anal. Chem., 2019, 110: 183.

doi: 10.1016/j.trac.2018.11.002     URL    
[39]
Han L, Liu S G, Liang J Y, Ju Y J, Li N B, Luo H Q. J. Hazard. Mater., 2019, 362: 45.

doi: 10.1016/j.jhazmat.2018.09.025     URL    
[40]
Li Y Y, Hu Y L, He Y, Ge Y L, Song G W, Zhou J G. ChemistrySelect, 2019, 4(25): 7639.

doi: 10.1002/slct.201901714     URL    
[41]
Huynh T P, Wojnarowicz A, Kelm A, Woznicki P, Borowicz P, Majka A, D'Souza F, Kutner W. ACS Sens., 2016, 1(6): 636.

doi: 10.1021/acssensors.6b00055     URL    
[42]
Liu G Y, Huang X D, Li L Y, Xu X M, Zhang Y G, Lv J, Xu D H. Nanomaterials, 2019, 9(7): 1030.

doi: 10.3390/nano9071030     URL    
[43]
Ren B X, Qi H, Li X Y, Liu L H, Gao L, Che G B, Hu B, Wang L, Lin X. RSC Adv., 2018, 8(11): 6083.

doi: 10.1039/C7RA07742D     URL    
[44]
Ahmadpour H, Hosseini S M M. Talanta, 2019, 194: 534.

doi: 10.1016/j.talanta.2018.10.053     URL    
[45]
Fu Y X, Jin H, Bu X N, Gui R J. J. Mater. Chem. C, 2019, 7(37): 11483.

doi: 10.1039/C9TC03517F     URL    
[46]
Li C Y, Yang Q, Wang X Y, Arabi M, Peng H L, Li J H, Xiong H, Chen L X. Food Chem., 2020, 319: 126575.

doi: 10.1016/j.foodchem.2020.126575     URL    
[47]
Wang J X. Doctoral Dissertation of Jiangsu University, 2019.
(王吉祥. 江苏大学博士论文, 2019.).
[48]
Wagner R, Wan W, Biyikal M, Benito-Peña E, Moreno-Bondi M C, Lazraq I, Rurack K, Sellergren B. J. Org. Chem., 2013, 78(4): 1377.

doi: 10.1021/jo3019522     URL    
[49]
Ton X A, Acha V, Bonomi P, Tse Sum Bui B, Haupt K. Biosens. Bioelectron., 2015, 64: 359.

doi: 10.1016/j.bios.2014.09.017     URL    
[50]
Hsu T J, Lin Z K, Syu M J. Anal. Chem., 2010, 82(21): 8821.

doi: 10.1021/ac1011848     URL    
[51]
Gao L, Li X Y, Zhang Q, Dai J D, Wei X, Song Z L, Yan Y S, Li C X. Food Chem., 2014, 156: 1.

doi: 10.1016/j.foodchem.2013.12.065     URL    
[52]
Wu Y T, Liu Y J, Gao X, Gao K C, Xia H, Luo M F, Wang X J, Ye L, Shi Y, Lu B. Chemosphere, 2015, 119: 515.

doi: 10.1016/j.chemosphere.2014.07.017     URL    
[53]
Zhu L, Cui X, Wu J, Wang Z N, Wang P Y, Hou Y, Yang M. Anal. Methods, 2014, 6(12): 4430.

doi: 10.1039/C4AY00717D     URL    
[54]
Bhogal S, Kaur K, Maheshwari S, Malik A K. J. Fluoresc., 2019, 29(1): 145.

doi: 10.1007/s10895-018-2322-4     URL    
[55]
Li J, Guo H Q, Yu H, Tian L X, Yan L S, Liu X M, Lin L K, Wang J L. Chin. J. Anal. Chem., 2020, 48(11): 1493.
(李晶, 郭会琴, 于慧, 田凌溪, 颜流水, 刘小明, 林立钶, 汪嘉琳. 分析化学, 2020, 48(11): 1493.).
[56]
Huang S Y, Tan L, Zhang L, Wu J Y, Zhang L G, Tang Y W, Wang H L, Liang Y. Sens. Actuat. B: Chem., 2020, 325: 128751.

doi: 10.1016/j.snb.2020.128751     URL    
[57]
Gao L. Doctoral Dissertation of Jiangsu University, 2016.
(高林. 江苏大学博士论文, 2016.).
[58]
Deng F, Goldys E M, Liu G Z. Sens. Actuat. B: Chem., 2019, 292: 277.

doi: 10.1016/j.snb.2019.04.142     URL    
[59]
Zhang X, Yang S, Chen W J, Li Y S, Wei Y P, Luo A Q. Polymers, 2019, 11(7): 1210.

doi: 10.3390/polym11071210     URL    
[60]
Amjadi M, Jalili R. Biosens. Bioelectron., 2017, 96: 121.

doi: 10.1016/j.bios.2017.04.045     URL    
[61]
Ming W N, Wang X Y, Lu W H, Zhang Z, Song X L, Li J H, Chen L X. Sens. Actuat. B: Chem., 2017, 238: 1309.

doi: 10.1016/j.snb.2016.09.111     URL    
[62]
Bhogal S, Kaur K, Malik A K, Sonne C, Lee S S, Kim K H. Trac Trends Anal. Chem., 2020, 133: 116043.

doi: 10.1016/j.trac.2020.116043     URL    
[63]
Li D Y, He X W, Chen Y, Li W Y, Zhang Y K. ACS Appl. Mater. Interfaces, 2013, 5(23): 12609.

doi: 10.1021/am403942y     URL    
[64]
Jia M F, Zhang Z, Li J H, Shao H J, Chen L X, Yang X B. Sens. Actuat. B: Chem., 2017, 252: 934.

doi: 10.1016/j.snb.2017.06.090     URL    
[65]
Liu H L, Ni T H, Mu L, Zhang D W, Wang J, Wang S, Sun B G. Sens. Actuat. B: Chem., 2018, 256: 1038.

doi: 10.1016/j.snb.2017.10.048     URL    
[66]
Lee M H, Thomas J L, Chen Y L, Lin C F, Tsai H H, Juang Y Z, Liu B D, Lin H Y. Biosens. Bioelectron., 2013, 47: 56.

doi: 10.1016/j.bios.2013.03.001     URL    
[67]
Wei X, Zhou Z P, Hao T F, Li H J, Zhu Y Z, Gao L, Yan Y S. RSC Adv., 2015, 5(55): 44088.

doi: 10.1039/C5RA05093F     URL    
[68]
Kim Y, Jeon J B, Chang J Y. J. Mater. Chem., 2012, 22(45): 24075.

doi: 10.1039/c2jm34798a     URL    
[69]
Jia M F, Zhang Z, Li J H, Shao H J, Chen L X, Yang X B. Sens. Actuat. B: Chem., 2017, 252: 934.

doi: 10.1016/j.snb.2017.06.090     URL    
[70]
Zhang Z, Li J H, Wang X Y, Shen D Z, Chen L X. ACS Appl. Mater. Interfaces, 2015, 7(17): 9118.

doi: 10.1021/acsami.5b00908     URL    
[71]
Guo P Q, Yang W, Hu H, Wang Y T, Li P. Anal. Bioanal. Chem., 2019, 411(12): 2607.

doi: 10.1007/s00216-019-01708-2     URL    
[72]
Liu Y, Zhong G X, Liu Z C, Meng M J, Liu F F, Ni L. Chem. Eng. J., 2016, 296: 437.

doi: 10.1016/j.cej.2016.03.085     URL    
[73]
Limaee N Y, Rouhani S, Olya M E, Najafi F. J. Fluoresc., 2020, 30(2): 375.

doi: 10.1007/s10895-020-02508-z     URL    
[74]
Shariati R, Rezaei B, Jamei H R, Ensafi A A. Talanta, 2019, 194: 143.

doi: S0039-9140(18)30979-2     pmid: 30609514
[75]
Yang X X, Sun J D, Cui F C, Ji J, Wang L P, Zhang Y Z, Sun X L. Talanta, 2020, 219: 121343.

doi: 10.1016/j.talanta.2020.121343     URL    
[76]
Xu S F, Lu H Z. Biosens. Bioelectron., 2016, 85: 950.

doi: 10.1016/j.bios.2016.06.020     URL    
[77]
Lu H Z, Xu S F. Talanta, 2017, 165: 482.

doi: 10.1016/j.talanta.2016.12.087     URL    
[78]
Khattab T A, Kassem N F, Adel A M, Kamel S. J. Fluoresc., 2019, 29(3): 693.

doi: 10.1007/s10895-019-02381-5     pmid: 31041695
[79]
Zhu Y Y, Cui M X, Ma J J, Zhang Q J. Sens. Actuat. B: Chem., 2020, 305: 127323.

doi: 10.1016/j.snb.2019.127323     URL    
[80]
Li D Y, Qin Y P, Li H Y, He X W, Li W Y, Zhang Y K. Biosens. Bioelectron., 2015, 66: 224.

doi: 10.1016/j.bios.2014.11.023     URL    
[81]
Guo Y Y, Li J, Song X L, Xu K, Wang J, Zhao C. ACS Appl. Bio Mater., 2021, 4(1): 420.

doi: 10.1021/acsabm.0c00897     URL    
[82]
Lu H Z, Xu S F. Sens. Actuat. B: Chem., 2020, 306: 127566.

doi: 10.1016/j.snb.2019.127566     URL    
[83]
Sun X C, Wang Y, Lei Y. Chem. Soc. Rev., 2015, 44(22): 8019.

doi: 10.1039/C5CS00496A     URL    
[84]
Sun X F. Doctoral Dissertation of Jilin University, 2020.
(孙小飞. 吉林大学博士论文, 2020.).
[85]
Wang J R, Chen X L, Wang X Y, Kang Q, Shen D Z, Chen L X. Sens. Actuat. B: Chem., 2020, 322: 128581.

doi: 10.1016/j.snb.2020.128581     URL    
[86]
Wei X, Chen H. Anal. Bioanal. Chem., 2019, 411(22): 5809.

doi: 10.1007/s00216-019-01963-3     URL    
[87]
Cao T, Zhang L, Ma H, Zheng L, Cao Y P, Wang J M, Yang Y X, Zhang J, Qin W W, Liu Y. Sens. Actuat. B: Chem., 2021, 338: 129841.

doi: 10.1016/j.snb.2021.129841     URL    
[88]
Amjadi M, Jalili R. Spectrochim. Acta. A., 2018, 191, 345.

doi: 10.1016/j.saa.2017.10.026     URL    
[89]
Wang T, Lv L, Wei X. Chemistry, 2019, 82(10): 893.
(王通, 吕亮, 卫潇. 化学通报, 2019, 82(10): 893.).
[90]
Xu S F, Lu H Z. Chem. Commun., 2015, 51(15): 3200.

doi: 10.1039/C4CC09766A     URL    
[91]
Gui W Y, Wang H, Liu Y, Ma Q. Sens. Actuat. B: Chem., 2018, 266: 685.

doi: 10.1016/j.snb.2018.03.176     URL    
[92]
Xu S F, Lu H Z. Biosens. Bioelectron., 2015, 73: 160.

doi: 10.1016/j.bios.2015.05.064     URL    
[93]
Wang X Y, Yu S M, Liu W, Fu L W, Wang Y Q, Li J H, Chen L X. ACS Sens., 2018, 3(2): 378.

doi: 10.1021/acssensors.7b00804     URL    
[94]
Lu H Z, Xu S F. Biosens. Bioelectron., 2017, 92: 147.

doi: 10.1016/j.bios.2017.02.013     URL    
[95]
Lu H Z, Wei D, Zheng R K, Xu S F. Anal., 2019, 144(21): 6283.

doi: 10.1039/C9AN01503E     URL    
[96]
Yang Q, Li J H, Wang X Y, Xiong H, Chen L X. Anal. Chem., 2019, 91(10): 6561.

doi: 10.1021/acs.analchem.9b00082     URL    
[97]
Yang Q, Li C Y, Li J H, Wang X Y, Arabi M, Peng H L, Xiong H, Chen L X. Nanoscale, 2020, 12(11): 6529.

doi: 10.1039/D0NR00765J     URL    
[98]
Chullasat K, Kanatharana P, Bunkoed O. Sens. Actuat. B: Chem., 2019, 281: 689.

doi: 10.1016/j.snb.2018.11.003     URL    
[99]
Luo L H, Zhang F, Chen C Y, Cai C Q. Anal. Chem., 2019, 91(24): 15748.

doi: 10.1021/acs.analchem.9b04001     URL    
[100]
Wei F D, Xu G H, Wu Y Z, Wang X, Yang J, Liu L P, Zhou P, Hu Q. Sens. Actuat. B: Chem., 2016, 229: 38.

doi: 10.1016/j.snb.2016.01.113     URL    
[101]
Qi J, Li B W, Wang X R, Zhang Z, Wang Z, Han J L, Chen L X. Sens. Actuat. B: Chem., 2017, 251: 224.

doi: 10.1016/j.snb.2017.05.052     URL    
[102]
Qi J, Li B W, Wang X Y, Fu L W, Luo L Q, Chen L X. Anal. Chem., 2018, 90(20): 11827.

doi: 10.1021/acs.analchem.8b01291     URL    
[103]
Zhou J R, Li B W, Qi A J, Shi Y J, Qi J, Xu H Z, Chen L X. Sens. Actuat. B: Chem., 2020, 305: 127462.

doi: 10.1016/j.snb.2019.127462     URL    
[104]
Lu H Z, Yu C W, Xu S F. Sens. Actuat. B: Chem., 2019, 288: 691.

doi: 10.1016/j.snb.2019.03.069     URL    
[105]
Ying R J, Lu H Z, Xu S F. New J. Chem., 2019, 43(16): 6404.

doi: 10.1039/C9NJ01356C     URL    
[106]
Lu H Z, Xu S F, Liu J Q. ACS Sens., 2019, 4(7): 1917.

doi: 10.1021/acssensors.9b00886     URL    
[107]
Lu H Z, Xu S F. Anal., 2020, 145(7): 2661.

doi: 10.1039/D0AN00098A     URL    
[108]
Alizadeh T, Sharifi A R, Ganjali M R. RSC Adv., 2020, 10(7): 4110.

doi: 10.1039/C9RA06910K     URL    
[109]
Wang Z M, Zhou C, Wu S W, Sun C Y. Polymers, 2021, 13(9): 1376.

doi: 10.3390/polym13091376     URL    
[110]
Xu Y P, Wang J X, Lu Y, Dai X H, Yan Y S. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219: 225.

doi: 10.1016/j.saa.2019.04.035     URL    
[111]
Lu X, Yang Y, Zeng Y, Li L, Wu X. Biosens. Bioelectron., 2018, 99: 47.

doi: 10.1016/j.bios.2017.07.041     URL    
[112]
Geng Y Y, Guo M L, Tan J A, Huang S Y, Tang Y W, Tan L, Liang Y. Sens. Actuat. B: Chem., 2019, 281: 821.

doi: 10.1016/j.snb.2018.10.098     URL    
[113]
Peng L, Xu Y Q, Huang T, Liu X Q, Yang X Y, Meng M J, Yan Y S. Nano, 2021, 16(2): 2150019.

doi: 10.1142/S1793292021500193     URL    
[114]
Wei X, Lv L, Zhang Z D, Guan W S. J. Appl. Polym. Sci., 2020, 137(38): 49126.

doi: 10.1002/app.49126     URL    
[115]
Luo K, Chen H C, Zhou Q, Yan Z H, Su Z Q, Li K. Anal. Chim. Acta, 2020, 1124: 113.

doi: 10.1016/j.aca.2020.05.006     URL    
[116]
Chen X Q, Luan Y, Wang N W, Zhou Z P, Ni X N, Cao Y F, Zhang G S, Lai Y F, Yang W M. J. Sep. Sci., 2018, 41(23): 4394.

doi: 10.1002/jssc.201800866     URL    
[117]
Cheubong C, Takano E, Kitayama Y, Sunayama H, Minamoto K, Takeuchi R, Furutani S, Takeuchi T. Biosens. Bioelectron., 2021, 172: 112775.

doi: 10.1016/j.bios.2020.112775     URL    
[118]
Piloto A M L, Ribeiro D S M, Rodrigues S S M, Santos J L M, Ferreira Sales M G. Sens. Actuat. B: Chem., 2020, 304: 127343.

doi: 10.1016/j.snb.2019.127343     URL    
[119]
Zhao Y J, Chen Y J, Fang M Y, Tian Y B, Bai G Y, Zhuo K L. Anal. Bioanal. Chem., 2020, 412(23): 5811.

doi: 10.1007/s00216-020-02803-5     URL    
[120]
Zhang X, Yang S, Jiang R, Sun L Q, Pang S P, Luo A Q. Sens. Actuat. B: Chem., 2018, 254: 1078.

doi: 10.1016/j.snb.2017.07.205     URL    
[121]
Piloto A M, Ribeiro D S M, Rodrigues S S M, Santos C, Santos J L M, Sales M G F. Sci. Rep., 2018, 8(1): 1.
[122]
Li J H, Fu J Q, Yang Q. Analyst, 2018, 143(15): 3570.

doi: 10.1039/C8AN00811F     URL    
[123]
René W, Lenoble V, Chioukh M, Branger C. Sens. Actuat. B: Chem., 2020, 319: 128252.

doi: 10.1016/j.snb.2020.128252     URL    
[124]
Han X, Han W Y, Zhang S T, Liu Z Q, Fu G Q. RSC Adv., 2019, 9(65): 38165.

doi: 10.1039/C9RA08556D     URL    
[125]
Boysen R I, Schwarz L J, Nicolau D V, Hearn M T W. J. Sep. Sci., 2017, 40(1): 314.

doi: 10.1002/jssc.201600849     URL    
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[3] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[4] 谢晓纹, 马晓国, 郭丽慧. 分子印迹聚合物用于环境内分泌干扰物的检测与去除[J]. 化学进展, 2019, 31(12): 1749-1758.
[5] 王婷, 薛瑞, 魏玉丽, 王明玥, 郭昊, 杨武. 共价有机框架材料的发展与应用:气体存储、催化与化学传感[J]. 化学进展, 2018, 30(6): 753-764.
[6] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.
[7] 胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 量子点荧光传感器的设计及应用[J]. 化学进展, 2017, 29(2/3): 300-317.
[8] 杨钰昆, 王小敏, 方国臻, 云雅光, 郭婷, 王硕. 基于分子印迹技术的电化学发光分析[J]. 化学进展, 2016, 28(9): 1351-1362.
[9] 明魏娜, 王晓艳, 明永飞, 李金花, 陈令新. 核-壳型分子印迹聚合物的制备与应用[J]. 化学进展, 2016, 28(4): 552-563.
[10] 张现峰, 杜学忠. 蛋白表面分子印迹技术[J]. 化学进展, 2016, 28(1): 149-162.
[11] 钟克利, 郭宝峰, 周雪, 蔡克迪, 汤立军, 金龙一. 基于芘的离子荧光化学传感器[J]. 化学进展, 2015, 27(9): 1230-1239.
[12] 鲍寅寅, 白如科*. 基于有机硅化合物的反应型氟离子荧光化学传感器[J]. 化学进展, 2013, 25(0203): 288-295.
[13] 许志刚*, 刘智敏, 杨保民, 字富庭. 替代模板分子印迹技术在样品前处理中的应用[J]. 化学进展, 2012, 24(08): 1592-1598.
[14] 吕春晖, 王硕, 方国臻, 汤轶伟, 王岁楼. 分子印迹在仿生免疫吸附分析中的应用[J]. 化学进展, 2012, 24(05): 844-851.
[15] 丁煜宾, 朱为宏, 解永树. 基于DPA识别基团的锌离子荧光传感器[J]. 化学进展, 2011, 23(12): 2478-2488.
阅读次数
全文


摘要

分子印迹荧光传感构建及应用