English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1876-1887 DOI: 10.7536/PC130317 前一篇   后一篇

• 综述与评论 •

烯氯化合物及其合成进展

徐立宁, 张军涛, 陶成, 曹小平*   

  1. 兰州大学化学化工学院 功能有机分子化学国家重点实验室 兰州 730000
  • 收稿日期:2013-03-01 修回日期:2013-05-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 曹小平 E-mail:caoxplzu@163.com
  • 基金资助:

    国家自然科学基金项目(No. 21272098, 21190034,21061160494,J1103307)资助

Advances in the Synthesis of Vinyl Chloride Compounds

Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping*   

  1. State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
  • Received:2013-03-01 Revised:2013-05-01 Online:2013-11-15 Published:2013-09-12

烯氯常见于天然产物中,并被认为是其生物活性官能团之一,在功能材料方面也多有应用,同时也是有机合成中一类重要的合成子。因而,烯氯的制备方法一直是有机合成化学和制药化学的热点研究内容之一。近年来,制备烯氯的新方法和新试剂不断出现,本文基于不同的反应类型, 对烯氯的构筑方法进行了综述,并列举了海洋天然产物malyngamides全合成中烯氯应用的重要性。

Vinyl chloride is an important functional group in many biologically and pharmaceutically active compounds, some vinyl chloride derivatives have been employed as organic materials, including polymers, and also are employed as the building block in organic synthesis. The construction of vinyl chloride is widely studied, new method and reagent are continuing to emerge in recently years. In this paper, the recent progress in the synthesis of vinyl chloride is reviewed according to the different reaction types, and its application in the total synthesis of marine natural product malyngamides is covered.

Contents
1 Introduction
2 Synthesis of vinyl chloride by Wittig reaction
3 Cr,Pd,Ti,In,Mg,and Cu-mediated reaction to synthesize vinyl chloride
3.1 Organic Cr-mediated reaction
3.2 Pd-mediated reaction
3.3 Ti-mediated reaction
3.4 In-mediated reaction
3.5 MgCl2-mediated reaction
3.6 Cu-mediated reaction
4 Using other methods to synthesize vinyl chloride
5 Studied on the synthesis of vinyl chloride and applied in marine natural product malyngamides
5.1 Synthesis of vinyl chloride by Wittig reaction in malyngamides M, O, P, Q, R
5.2 Synthesis of vinyl chloride by the reaction of n-Bu4NI with 1,2-dichloroethane in malyngamides K, L, 5-epi-C
6 Conclusion

中图分类号: 

()

[1] Kahnberg P, Sterner O. Tetrahedron, 2001, 57: 7181—7184
[2] Kahnberg P, Lee C W, Grubbs R H, Sterner O. Tetrahedron, 2002, 58: 5203—5208
[3] Graf K M, Tabor M G, Brown M L, Paige M. Org. Lett., 2009, 11: 5382—5385
[4] Smith A B, Razler T M, Meis R M, Pettit G R. J. Org. Chem., 2008, 73: 1201—1208
[5] Choi Y, Li L, Grill S, Gullen E, Lee C S, Gumina, G, Tsujii E, Cheng Y C, Chu C K. J. Med. Chem., 2000, 43: 5238—5246
[6] Gallimore W A, Scheuer P J. J. Nat. Prod., 2000, 63: 1422—1424
[7] Milligan K E, Márquez B, Williamson R T, Davies-Coleman M, Gerwick W H. J. Nat. Prod., 2000, 63: 965—968
[8] Gaynor S T. Macromolecular, 2012, 45: 2200—2208
[9] Li G, Wang H, Zheng H, Bai R. Journal of Polymer Science Part A: Polymer Chemistry, 2010, 48: 1348—1356
[10] Whipp C J, Turiso F G L. Tetrahedron Lett., 2008, 49: 5508—5510
[11] Esmieu W R, Worden S M, Catterick D, Wilson C, Hayes C J. J. Org. Lett., 2008, 10: 3045—3048
[12] Kao H L, Lee C F. Org. Lett., 2011, 13: 5204—5207
[13] Hu T, Shen M, Chen Q, Li C. Org. Lett., 2006, 8: 2647—2650
[14] Blackburn L, Pei C, Taylor R J K. Synlett, 2002, 215—218
[15] Shuto S, Niizuma S, Matsuda A. J. Org. Chem., 1998, 63: 4489—4493
[16] Barrett A G M, Hamprecht D, Ohkubo M. J. Org. Chem., 1997, 62: 9376—9378
[17] MacCoss R N, Balskus E P, Ley S V. Tetrahedron Lett., 2003, 44: 7779—7781
[18] Takai K, Kurcda T, Nakatsukasa S, Oshima K, Nozaki H. Tetrahedron Lett., 1985, 26: 5585—5588
[19] Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc., 1986, 108: 7408—7410
[20] Takai K, Kokumai R, Nobunaka T. Chem. Commun., 2001, 1128—1129
[21] Concellón J M, Rodríguez-Solla H, Méjica C. Tetrahedron Lett., 2004, 45: 2977—2979
[22] Concellón J M, Bernad P L, Méjica C. Tetrahedron Lett., 2006, 46: 569—571
[23] Bckvall J E, Nilsson Y I M, Andersson P G, Gatti R G P, Wu J. Tetrahedron Lett., 1994, 35: 5713—5716
[24] Nilsson Y I M, Gatti R G P, Andersson P G, Bckvall J E. Tetrahedron, 1996, 52: 7511—7523
[25] Holzapfel C W, Marais L. Tetrahedron Lett., 1998, 39: 2179—2182
[26] Jiang H, Ma S, Zhu G, Lu X. Tetrahedron, 1996, 52: 10945—10954
[27] Keck D, Vanderheiden S, Brse S. Eur. J. Org. Chem., 2006, 4916—4923
[28] Steinhagen H, Corey E J. Org. Lett., 1999, 1: 823—824
[29] Métay E, Hu Q, Negishi E I. Org. Lett., 2006, 8: 5773—5776
[30] Kim S, Kim S, Lee T, Ko H, Kim D. Org. Lett., 2004, 6: 3601—3604
[31] Takeda T, Sasaki R, Fujiwara T. J. Org. Chem., 1998, 63: 7286—7288
[32] Takeda T, Endo Y, Reddy A C S, Sasak R, Fujiwara T. Tetrahedron, 1999, 55: 2475—2486
[33] Takeda T, Nozaki N, Fujiwara T. Tetrahedron Lett., 1998, 39: 3533—3536
[34] Wei H X, Gao J J, Li G. Tetrahedron Lett., 2001, 42: 9119—9122
[35] Tsai C C, Chien C C, Chang Y C, Lin H C, Yan T H. J. Org. Chem., 2005, 70: 5745—5747
[36] Cook G R, Hayashi R. Org. Lett., 2006, 8: 1045—1048
[37] Tsuji H, Fujimoto T, Endo K, Nakamura M, Nakamura E. Org. Lett., 2008, 10: 1219—1221
[38] Wang Y, Lam H W. J. Org. Chem., 2009, 74: 1353—1355
[39] Ma S, Zhang J, Cai Y, Lu L. J. Am. Chem. Soc., 2003, 125: 13954—13955
[40] Bejot R, Tisserand S, Reddy L M, Barma D K, Baati R, Falck J R, Mioskowski C. Angew. Chem. Int. Ed., 2005, 44: 2008—2011
[41] Baati R, Barma D, Krishna U M, Mioskowski C, Falck J R. Tetrahedron Lett., 2002, 43: 959—961
[42] Baati R, Barma D K, Falck J R, Mioskowski C. J. Am. Chem. Soc., 2001, 123: 9196—9197
[43] Ram R N, Meher N K. Org. Lett., 2003, 5: 145—147
[44] Ram R N, Manoj T P. Org. Lett., 2008, 10: 2243—2246
[45] Barluenga J, Baragaa B, Concellón J M. J. Org. Chem., 1999, 64: 2843—2846
[46] Kataoka T, Kinoshita H, Kinoshika S, Iwamura T, Watanabe S. Angew. Chem. Int. Ed., 2000, 39: 2358—2360
[47] Moreno-Dorado F J, Guerra F M, Manzano F L, Aladro F J, Jorge Z D, Massanet G M. Tetrahedron Lett., 2003, 44: 6691—6693
[48] Lebrun M E, Marquand P L, Berthelette C. J. Org. Chem., 2006, 71: 2009—2013
[49] Lemay A B, Vulic K S, Ogilvie W W. J. Org. Chem., 2006, 71: 3615—3618
[50] Banwell M G, Phillis A T, Willis A C. Org. Lett., 2006, 8: 5341—5344
[51] Chen J, Shi Z F, Zhou L, Xie A L, Cao X P. Tetrahedron Lett., 2010, 66: 3499—3507
[52] Chen J, Fu X G, Zhou L, Zhang J T, Qi X L. J. Org. Chem., 2009, 74: 4149—4157
[53] Zhang J T, Qi X L, Chen J, Li B S, Zhou Y B. J. Org. Chem., 2011, 76: 3946—3959

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[4] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[5] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[6] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[7] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[8] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[9] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[10] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[11] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[12] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[13] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[14] 武金丹, 巨勇. 基于天然产物骨架的分子离子识别体系[J]. 化学进展, 2013, 25(11): 1888-1897.
[15] 郜嵩, Sumit Basu, 杨广义, Arijita Deb, 胡明. 天然产物用于癌症化学预防的口服生物利用度问题[J]. 化学进展, 2013, 25(09): 1553-1574.
阅读次数
全文


摘要

烯氯化合物及其合成进展