English
新闻公告
More
化学进展 2013, Vol. 25 Issue (11): 1888-1897 DOI: 10.7536/PC130177 前一篇   后一篇

• 综述与评论 •

基于天然产物骨架的分子离子识别体系

武金丹1, 巨勇1,2*   

  1. 1. 清华大学化学系 生命有机磷化学及化学生物学教育部重点实验室 北京 100084;
    2. 兰州大学功能有机分子化学国家重点实验室 兰州 730000
  • 收稿日期:2013-01-01 修回日期:2013-04-01 出版日期:2013-11-15 发布日期:2013-09-12
  • 通讯作者: 巨勇 E-mail:juyong@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21172130)和国家重点基础研究发展计划(973)项目(No.2012CB821600)资助

Molecular and Ion Recognition Molecules Based on Natural Products

Wu Jindan1, Ju Yong1,2*   

  1. 1. Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China;
    2. State Key Lab of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
  • Received:2013-01-01 Revised:2013-04-01 Online:2013-11-15 Published:2013-09-12

具有结构多样性的天然产物,因其生理活性独特,在药物方面发挥了重要的作用。近年来,利用天然产物手性骨架、生物相容性以及多修饰位点的特性,进行结构改造和官能团的引入,设计合成的新型天然产物骨架有机功能分子,在阳离子识别、阴离子识别、离子的双响应性识别及分子识别等领域中都发挥了重要作用,成为新型功能分子的研究热点之一。本文介绍近年来以天然产物为骨架设计合成的新型功能分子在分子、离子识别方面的研究现状及其发展前景。

Natural products are usually used as therapeutic drugs and good lead compounds after structural modification and transformation due to their structural diversity and unique biological activities. Because of the characteristics of chiral scaffolds, biocompatibility, and various modification sites, the novel functional molecules based on natural products were designed and applied in molecular and ion recognition. In this review, the development of functional molecules based on natural products in molecular and ion recognition, including cation recognition, anion recognition, dual responsive recognition for ions, molecular recognition, chiral recognition and so on are briefly summarized.

Contents
1 Introduction
2 Cation recognition of natural products
2.1 Alkali metal ions recognition
2.2 Transition metal ions recognition
3 Anion recognition of natural products
4 Dual responsive recognition for ions
5 Molecular recognition of natural products
5.1 Chiral recognition
5.2 Chemical reaction-mediated recognition
5.3 Inclusion interaction
5.4 Hydrogen bonding interaction
6 Conclusion and outlook

中图分类号: 

()

[1] Kim S K, Sessler J L. Chem. Soc. Rev., 2010, 39: 3784—3809
[2] Hay B P. Chem. Soc. Rev., 2010, 39: 3700—3708
[3] Steed J W. Chem. Soc. Rev., 2010, 39: 3686—3699
[4] Amendola V, Fabbrizzi L, Mosca L. Chem. Soc. Rev., 2010, 39: 3889—3915
[5] Beer P D, Gale P A. Angew. Chem. Int. Ed., 2001, 40: 486—516
[6] Bergamini G, Marchi E, Ceroni P. Coord. Chem. Rev., 2011, 255: 2458—2468
[7] Zheng B, Wang F, Dong S Y, Huang F H. Chem. Soc. Rev., 2012, 41: 1621—1636
[8] Ramaiah D, Neelakandan P P, Nair A K, Avirah R R. Chem. Soc. Rev., 2010, 39: 4158—4168
[9] Chen Y, Zhang Y M, Liu Y. Isr. J. Chem., 2011, 51: 515—524
[10] Wang M X. Acc. Chem. Res., 2012, 45: 182—195
[11] 徐任生(Xu R S), 叶阳(Ye Y), 赵维民(Zhao W M). 天然产物化学(Natural Products Chemistry). 北京: 科学出版社(Beijing: Science Press), 2004. 1—24
[12] Newman D J, Cragg G M, Snader K M. J. Nat. Prod., 2003, 66: 1022—1037
[13] 卢金荣(Lu J R), 巨勇(Ju Y). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33: 469—482
[14] Davis A P, Joos J B. Coord. Chem. Rev., 2003, 240: 143—156
[15] 胡君(Hu J), 巨勇(Ju Y). 化学进展(Progress in Chemistry), 2011, 23(1): 181—191
[16] Li Y X, Dias J R. Chem. Rev., 1997, 97: 283—304
[17] Hu J, Lu J R, Ju Y. Chem. Asian J., 2011, 6: 2636—2647
[18] Gautrot J E, Zhu X X. J. Mater. Chem., 2009, 19: 5705—5716
[19] Gale P A. Chem. Soc. Rev., 2010, 39: 3746—3771
[20] Davis A P. Coord. Chem. Rev., 2006, 250: 2939—2951
[21] Brotherhood P R, Davis A P. Chem. Soc. Rev., 2010, 39: 3633—3647
[22] Wallimann P, Marti T, Fürer A, Diederich F. Chem. Rev., 1997, 97: 1567—1608
[23] Inoue Y, Liu Y, Tong L H, Ouchi M, Hakushi T. J. Chem. Soc. Perkin Trans. 2, 1993, 1947—1950
[24] Maitra U, Bag B G. J. Org. Chem., 1994, 59: 6114—6115
[25] Joachimiak R, Paryzek Z. J. Incl. Phenom. Macro., 2004, 49: 127—132
[26] Haapala M, Kolehmainen E, Tamminen J, Kauppinen R, Linnanto J, Virtanen E, Suontamo R, Vainiotalo P. Mat. Sci. Eng. C, 2001, 18: 21—23
[27] Zhang J, Luo J, Zhu X X, Junk M J N, Hinderberger D. Langmuir, 2010, 26: 2958—2962
[28] Kumar A, Pandey P S. Tetrahedron Lett., 2009, 50: 5842—5845
[29] Hu J, Zhang M, Yu L B, Ju Y. Bioorg. Med. Chem. Lett., 2010, 20: 4342—4345
[30] Sheng R L, Wang P F, Gao Y H, Wu Y, Liu W M, Ma J J, Li H P, Wu S K. Org. Lett., 2008, 10: 5015—5018
[31] Jung H S, Kwon P S, Lee J W, Kim J I, Hong C S, Kim J W, Yan S H, Lee J Y, Lee J H, Joo T, Kim J S. J. Am. Chem. Soc., 2009, 131: 2008—2012
[32] Lee J H, Jeong A R, Shin I S, Kim H J, Hong J I. Org. Lett., 2010, 12: 764—767
[33] Kim H J, Lee J H, Hong J I. Tetrahedron Lett., 2011, 52: 4944—4946
[34] Zhou Z J, Li N, Tong A J. Anal. Chim. Acta, 2011, 702: 81—86
[35] Su Z, Chen K Y, Guo Y, Qi H P, Yang X F, Zhao M L. J. Fluoresc., 2010, 20: 851—856
[36] Kumar A, Pandey P S. Org. Lett., 2008, 10: 165—168
[37] Ghosh S, Choudhury A R, Row T N G, Maitra U. Org. Lett., 2005, 7: 1441—1444
[38] Hu J, Li R F, Lu J R, Ju Y. Tetrahedron Lett., 2011, 52: 4211—4214
[39] Chahar M, Pandey P S. Tetrahedron, 2008, 64: 6488—6493
[40] Khatri V K, Chahar M, Pavani K, Pandey P S. J. Org. Chem., 2007, 72: 10224—10226
[41] Bhattarai K M, del Amo V, Magro G, Sisson A L, Joos J B, Charmant J P H, Kantacha A, Davis A P. Chem. Commun., 2006, 2335—2337
[42] Ayling A J, Pérez-Payán M N, Davis A P. J. Am. Chem. Soc., 2001, 123: 12716—12717
[43] Lee K S, Kim H J, Kim G H, Shin I, Hong J I. Org. Lett., 2008, 10: 49—51
[44] Sun X, Wang Y W, Peng Y. Org. Lett., 2012, 14: 3420—3423
[45] Guo Z, Zhu W, Shen L, Tian H. Angew. Chem. Int. Ed., 2007, 46: 5549—5553
[46] Lee J Y, Kim S K, Jung J H, Kim J S. J. Org. Chem., 2005, 70: 1463—1466
[47] Lu J R, Hu J, Song Y, Ju Y. Org. Lett., 2011, 13: 3372—3375
[48] Hu J, Wu J D, Lu J R, Ju Y. Tetrahedron Lett., 2012, 53: 6705—6709
[49] 王秀中(Wang X Z), 王清清(Wang Q Q), 宋海峰(Song H F), 李卫平(Li W P). 药物分析杂志(Chinese Journal of Pharmaceutical Analysis), 2010, 30(6): 1162—1166
[50] Siracusa L, Hurley F M, Dresen S, Lawless L J, Pérez-Payán M N, Davis A P. Org. Lett., 2002, 4: 4639—4642
[51] Baragaňa B, Blackburn A G, Breccia P, Davis A P, de Mendoza J, Padron-Carrillo J M, Prados P, Riedner J, de Vries J G. Chem. Eur. J., 2002, 8: 2931—2936
[52] Davis A P, Lawless L J. Chem. Commun., 1999, 35: 9—10
[53] Lawless L J, Ayling A J, Pérez-Payán M N, Davis A P. J. Chem. Soc. Perkin Trans. 1, 2001, 1329—1341
[54] Sirikulkajorn A, Tuntulani T, Ruangpornvisuti V, Tomapatanaget B, Davis A P. Tetrahedron, 2010, 66: 7423—7428
[55] Scuderi D, Maitre P, Rondino F, Le Barbu-Debus K, Lepere V, Zehnacker-Rentien A. J. Phys. Chem. A, 2010, 114: 3306—3312
[56] Maier N M, Nicoletti L, Lammerhofer M, Lindner W. Chirality, 1999, 11: 522—528
[57] Frycak P, Schug K A. Chirality, 2009, 21: 929—936
[58] Czerwenka C, Zhang M M, Kahlig H, Maier N M, Lipkowitz K B, Lindner W. J. Org. Chem., 2003, 68: 8315—8327
[59] Kacprzak K, Gawronski J. Chem. Commun., 2003, 1532—1533
[60] Maier N M, Schefzick S, Lombardo G M, Feliz M, Rissanen K, Lindner W, Lipkowitz K B. J. Am. Chem. Soc., 2002, 124: 8611—8629
[61] Alcantar C G, Eliseev A V, Yatsimirsky A K. Bioorg. Med. Chem. Lett., 1995, 5: 2993—2998
[62] Godoy-Alcantar C, Nelen M I, Eliseev A V, Yatsimirsky A K. J. Chem. Soc. Perkin Trans. 2, 1999, 353—361
[63] Tripathi A, Kumar A, Pandey P S. Tetrahedron Lett., 2012, 53: 5745—5748
[64] Matteini P, Agati G, Pinelli P, Goti A. Monatsh. Chem., 2011, 142: 885—893
[65] Yi L, Li H Y, Sun L, Liu L L, Zhang C H, Xi Z. Angew. Chem. Int. Ed., 2009, 48: 4034—4037
[66] McKenna J, McKenna J M, Thornthwaite D W. J. Chem. Soc. Chem. Commun., 1977, 809—811
[67] Kinneary J F, Roy T M, Albert J S, Yoon H, Wagler T R, Shen L, Burrows C J. J. Inclusion Phenom. Mol. Recognit. Chem., 1989, 7: 155—168
[68] Hua Y, Flood A H. Chem. Soc. Rev., 2010, 39: 1262—1271
[69] Xu Z, Kim S K, Yoon J. Chem. Soc. Rev., 2010, 39: 1457—1466
[70] Chattopadhyay P, Pandey P S. Bioorg. Med. Chem. Lett., 2007, 17: 1553—1557
[71] Chattopadhyay P, Pandey P S. Tetrahedron, 2006, 62: 8620—8624
[72] Rasmussen B S, Elezcano U, Skrydstrup T. J. Chem. Soc. Perkin Trans. 1, 2002, 1723—1733

[1] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[2] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[3] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[4] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[5] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[6] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[7] 卢金荣, 巨勇. 基于三萜骨架的超分子凝胶体系[J]. 化学进展, 2016, 28(2/3): 260-268.
[8] 龚德君, 高冠斌, 张明曦, 孙涛垒. 手性金团簇的制备、性质及应用[J]. 化学进展, 2016, 28(2/3): 296-307.
[9] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[10] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[11] 陈德皓, 徐常登, 刘子立, 陈玲, 甄春花, 孙世刚. 功能分子在贵金属纳米晶催化剂形状控制合成中的作用机理[J]. 化学进展, 2013, 25(10): 1667-1680.
[12] 郜嵩, Sumit Basu, 杨广义, Arijita Deb, 胡明. 天然产物用于癌症化学预防的口服生物利用度问题[J]. 化学进展, 2013, 25(09): 1553-1574.
[13] 胡君, 巨勇. 三萜骨架功能分子[J]. 化学进展, 2011, 23(01): 181-191.
[14] 童星, 肖小华, 邓建朝, 王家玥, 李攻科. 低温微波技术在化学研究中的应用[J]. 化学进展, 2010, 22(12): 2462-2468.
[15] 安众福 陈润锋 史慧芳 马琮 石乃恩 黄维. 联萘酚衍生物的光电功能及其应用*[J]. 化学进展, 2010, 22(10): 1973-1982.