English
新闻公告
More
化学进展 2013, Vol. 25 Issue (10): 1667-1680 DOI: 10.7536/PC130124 前一篇   后一篇

• 综述与评论 •

功能分子在贵金属纳米晶催化剂形状控制合成中的作用机理

陈德皓1, 徐常登2, 刘子立1, 陈玲1, 甄春花1, 孙世刚1,2   

  1. 1. 厦门大学化学化工学院 固体表面物理化学国家重点实验室 厦门361005;
    2. 厦门大学能源研究院 厦门361005
  • 收稿日期:2013-01-01 修回日期:2013-03-01 出版日期:2013-11-12 发布日期:2013-07-18
  • 通讯作者: 孙世刚 E-mail:sgsun@xmu.edu.cn
  • 基金资助:

    国家自然科学基金“界面电化学”创新研究群体项目(No.21021002)资助

Mechanism of Functional Molecules in Shape-Control Synthesis of Noble Metal Nanocrystal Catalysts

Chen Dehao1, Xu Changdeng2, Liu Zili1, Chen Ling1, Zhen Chunhua1, Sun Shigang1,2   

  1. 1. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xianmen University, Xiamen 361005, China;
    2. School of Energy Research, Xiamen University, Xiamen 361005, China
  • Received:2013-01-01 Revised:2013-03-01 Online:2013-11-12 Published:2013-07-18

金属纳米晶催化剂(简称金属纳米催化剂)广泛应用于化学、能源等现代工业。铂等稀贵金属目前仍然是燃料电池等领域不可替代的催化剂材料,进一步提高金属催化剂的性能和利用率一直是重大挑战。金属的表面结构取决于晶体的形状。因此,形状控制合成可有效地调控金属纳米晶催化剂的表面结构和性质,近年来得到了大量研究。功能分子(保护剂、稳定剂、表面活性剂、添加剂等)对金属纳米晶的形状控制合成具有重要作用,尤其是在湿化学法形状控制合成中。深入认识功能分子在形状控制合成中的作用机理,可为理性地设计和制备具有特定功能的纳米催化剂提供指导。功能分子通常是通过在纳米晶核特定晶面上优先吸附,或刻蚀某些特定的晶面,或者加速或抑制某些晶面的生长实现对纳米晶催化剂表面结构的调控。虽然通过结构控制合成的电化学法和湿化学法已经制备出大量不同表面结构的金属纳米晶催化剂,但是对功能分子作用机理的认识还远未深入。本文综述了近二十年金属纳米晶催化剂形状控制合成的进展,侧重阐述对功能分子作用机理的研究,总结了功能分子在金属纳米晶催化剂形状控制合成中优先吸附的重要作用机制,以及优化功能分子在纳米粒子形状控制合成中的一些基本策略。

Metal nanocrystal catalysts (abr. metal nanocatalysts) are widely used in chemical and energy industries. The rare and precious metals as platinum are actually irreplaceable materials for catalysts, therefore to improve the activity and utilization efficiency of metal catalysts is always a challenge. Shape-control synthesis is an efficient way to tailor the surface structure of metal nanocrystal and therefore create particular functions in catalysis. The functional molecules such as stabilizers, capping agents, surfactants and additives, etc., are indispensable in the shape-control synthesis, especially in the wet chemistry route. In order to rationally design and synthesize metal nanocatalysts with high activity, high selectivity and high stability, it is important to explicit the roles and mechanisms of functional agents in shape-control synthesis. The functional agents usually assist in shape-control synthesis of nanocrystals through preferential adsorption on specific crystal facets, or etching particular crystal planes, or accelerating/inhibiting certain crystal growth directions. Although a mass body of metal nanocrystals with different shape have been synthesized, the explicit roles and mechanism of functional molecules in the shape-control synthesis are poorly defined and a full understanding is still elusive. The current paper reviews mainly the recent progress made in studies of mechanism of functional molecules in shape-control synthesis of metal nanocatalysts in the last two decades. The mechanism of preferential adsorption of functional agents and some basic strategy of optimizing the use of functional molecules in shape control synthesis of noble metal nanocatalysts are summarized.

Contents
1 Introduction
2 Shape-control synthesis of noble metal nanocrystal catalysts
2.1 Shape-control synthesis by electrochemical method
2.2 Shape-control synthesis by wet chemistry route
3 The role of functional molecules
3.1 Small molecules
3.2 Etching agents
3.3 Surfactants
3.4 Polymers
3.5 Biomolecules
4 Strategy of using functional molecules in shape-control synthesis of metal nanocatalysts
5 Conclusion and outlook

中图分类号: 

()
[1] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732—735
[2] Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovi ć N M. Science, 2007, 315: 493—497
[3] Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Chem. Sci., 2012, 3: 1157—1161
[4] Tian N, Zhou Z Y, Yu N F, Wang L Y, Sun S G. J. Am. Chem. Soc., 2010, 132: 7580—7581
[5] Zhou Z, Huang Z Z, Chen D J, Wang Q, Tian N, Sun S G. Angew. Chem. Int. Ed., 2009, 49: 411—414
[6] Chen Y X, Chen S P, Zhou Z Y, Tian N, Jiang Y X, Sun S G, Ding Y, Wang Z L. J. Am. Chem. Soc., 2009, 131: 10860—10862
[7] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Chem. Soc. Rev., 2011, 40: 4167—4185
[8] Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2008, 48: 60—103
[9] Solla-Gullón J, Vidal-Iglesias F, Feliu J M. Annu. Rev. Phys. Chem., 2011, 107: 263—297
[10] Sau T K, Rogach A. Adv. Mater., 2009, 22: 1781—1804
[11] 田娜(Tian N). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2007
[12] Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin M F, Surwit R S, Ricquier D. Nature Genet., 1997, 15: 269—272
[13] Davis S M, Zaera F, Somorjai G A. J. Catal., 1984, 85: 206—223
[14] Grozovski V, Solla-Gullón J, Climent V, Herrero E, Feliu J M. J. Phys. Chem. C, 2010, 114: 13802—13812
[15] Vidal-Iglesias F J, Arán-Ais R M, Solla-Gullon J, Garnier E, Herrero E, Aldaz A, Feliu J M. Phys. Chem. Chem. Phys., 2012, 14: 10258—10265
[16] Adi ć R, Markovi ć N, Veovi ć V. J. Electroanal. Chem., 1984, 165: 105—120
[17] Somorjai G A, Park J Y. Catal. Lett., 2007, 115: 87—98
[18] Spencer N, Schoonmaker R, Somorjai G. Nature, 1981, 294: 643—644
[19] Choi K S. Dalton Trans., 2008, 5432—5438
[20] Chen Q S, Zhou Z Y, Vidal-Iglesias F J, Solla-Gullón J, Feliu J M, Sun S G. J. Am. Chem. Soc., 2011, 133: 12930—12933
[21] Liu H X, Tian N, Brandon M P, Zhou Z Y, Lin J L, Hardacre C, Lin W F, Sun S G. ACS Catal., 2012, 2: 708—715
[22] 黄小青(Huang X Q). 厦门大学博士论文 (Doctoral Dissertation of Xiamen University), 2011
[23] Murphy C J. Science, 2002, 298: 2139—2141
[24] Niu W, Zhang L, Xu G. ACS Nano, 2010, 4: 1987—1996
[25] Li Y Y, Jiang Y X, Chen M H, Liao H G, Huang R, Zhou Z Y, Tian N, Chen S P, Sun S G. Chem. Commun., 2012, 48: 9531—9533
[26] Zhang J, Langille M R, Personick M L, Zhang K, Li S, Mirkin C A. J. Am. Chem. Soc., 2010, 132: 14012—14014
[27] Personick M L, Langille M R, Zhang J, Harris N, Schatz G C, Mirkin C A. J. Am. Chem. Soc., 2011, 133: 6170—6173
[28] Hong J W, Kim M, Kim Y, Han S W. Chem. -A Eur. J., 2012, 18: 16626—16630
[29] Lim B, Xiong Y, Xia Y. Angew. Chem. Int. Ed., 2007, 119: 9439—9442
[30] Zhu W, Yin A X, Zhang Y W, Yan C H. Chem. -A Eur. J., 2012, 18: 12222—12226
[31] Lu C L, Prasad K S, Wu H L, Ho J A, Huang M H. J. Am. Chem. Soc., 2010, 132: 14546—14553
[32] Zhang J, Langille M R, Personick M L, Zhang K, Li S, Mirkin C A. J. Am. Chem. Soc., 2010, 132: 14012—14014
[33] Jin M, Zhang H, Xie Z, Xia Y. Angew. Chem. Int. Ed., 2011, 50: 7850—7854
[34] Yu T, Kim D Y, Zhang H, Xia Y. Angew. Chem. Int. Ed., 2011, 50: 2773—2777
[35] Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134: 14542—14554
[36] Lu D, Tanaka K. J. Phys. Chem. B, 1997, 101: 4030—4034
[37] Lu D, Tanaka K. Surf. Sci., 1997, 373: L339—L344
[38] Lu D, Tanaka K. J. Solid State Electrochem., 1997, 1: 187—193
[39] Nielsch K, Müller F, Li A P, Gsele U. Adv. Mater., 2000, 12: 582—586
[40] Favier F, Walter E C, Zach M P, Benter T, Penner R M. Science, 2001, 293: 2227—2231
[41] Reetz M T, Helbig W. J. Am. Chem. Soc., 1994, 116: 7401—7402
[42] Reetz M T, Winter M, Breinbauer R, Thurn-Albrecht T, Vogel W. Chem. -A Eur. J., 2001, 7: 1084—1094
[43] Siegfried M J, Choi K S. Adv. Mater., 2004, 16: 1743—1746
[44] Siegfried M J, Choi K S. Angew. Chem. Int. Ed., 2005, 117: 3282—3287
[45] Siegfried M J, Choi K S. J. Am. Chem. Soc., 2006, 128: 10356—10357
[46] Liang D, Mallett J J, Zangari G. J. Electrochem. Soc., 2011, 158: D149—D157
[47] Leistner K, Fähler S, Schlörb H, Schultz L. Electrochem. Comm., 2006, 8: 916—920
[48] Rezaei M, Ghorbani M, Dolati A. Electrochim. Acta, 2010, 56: 483—490
[49] Hwang S M, Lee C H, Kim J J, Moffat T P. Electrochim. Acta, 2010, 55: 8938—8946
[50] Gomez E, Pane S, Valles E. Electrochim. Acta, 2005, 51: 146—153
[51] Zeng J, Zheng Y, Rycenga M, Tao J, Li Z Y, Zhang Q, Zhu Y, Xia Y. J. Am. Chem. Soc., 2010, 132: 8552—8553
[52] Zhang J, Fang J. J. Am. Chem. Soc., 2009, 131: 18543—18547
[53] Wu B, Zheng N, Fu G. Chem. Commun., 2010, 47: 1039—1041
[54] Chen M, Wu B, Yang J, Zheng N. Adv. Mater., 2012, 24: 862—879
[55] Wang C, Daimon H, Lee Y, Kim J, Sun S. J. Am. Chem. Soc., 2007, 129: 6974—6975
[56] Huang X, Tang S, Zhang H, Zhou Z, Zheng N. J. Am. Chem. Soc., 2009, 131: 13916—13917
[57] Huang X, Zhao Z, Fan J, Tan Y, Zheng N. J. Am. Chem. Soc., 2011, 133: 4718—4721
[58] Wang Y, Fang J. Angew. Chem. Int. Edit., 2011, 50: 992—993
[59] Zhang Q, Li N, Goebl J, Lu Z, Yin Y. J. Am. Chem. Soc., 2011, 133: 18931—18939
[60] Kilin D S, Prezhdo O V, Xia Y. Chem. Phys. Lett., 2008, 458: 113—116
[61] Patungwasa W, Hodak J H. Mater. Chem. Phys., 2008, 108: 45—54
[62] Kou X, Zhang S, Tsung C K, Yeung M H, Shi Q, Stucky G D, Sun L, Wang J, Yan C. J. Phys. Chem. B, 2006, 110: 16377—16383
[63] Chen D H, Ye J Y, Xu C D, Li X, Li J T, Zhen C H, Tian N, Zhou Z Y, Sun S G. Sci. China. Chem., 2012, 55: 2353—2358
[64] Xiong Y, Chen J, Wiley B, Xia Y, Aloni S, Yin Y. J. Am. Chem. Soc., 2005, 127: 7332—7333
[65] Li C, Sato R, Kanehara M, Zeng H, Bando Y, Teranishi T. Angew. Chem. Int. Ed., 2009, 121: 7015—7019
[66] Jin M, Liu H, Zhang H, Xie Z, Liu J, Xia Y. Nano Res., 2011, 4: 83—91
[67] Yuan Q, Zhou Z, Zhuang J, Wang X. Inorg. Chem., 2010, 49: 5515—5521
[68] Nakamura M, Hanioka Y, Ouchida W, Yamada M, Hoshi N. Chem. Phys. Chem., 2009, 10: 2719—2724
[69] Srivastava S C, Newman L. Inorg. Chem., 1966, 5: 1506—1510
[70] Zhang H, Jin M, Wang J, Li W, Camargo P H C, Kim M J, Yang D, Xie Z, Xia Y. J. Am. Chem. Soc., 2011, 133: 6078—6089
[71] Carrasquillo A, Jeng J J, Barriga R J, Temesghen W F, Soriaga M P. Inorg. Chim. Acta, 1997, 255: 249—254
[72] Lee H, Habas S E, Kweskin S, Butcher D, Somorjai G A, Yang P. Angew. Chem. Int. Ed., 2006, 118: 7988—7992
[73] Ma M, Zhang Y, Gu N. Colloids Surf. A, 2011, 373: 6—10
[74] Pham M D, Oudart Y, Baubet B, Verdon C, Thomazeau C. Oil & Gas. Sci. Technol., 2009, 64: 697—706
[75] Sau T K, Murphy C J. J. Am. Chem. Soc., 2004, 126: 8648—8649
[76] Nikoobakht B, El-Sayed M A. Chem. Mater., 2003, 15: 1957—1962
[77] Chu H C, Kuo C H, Huang M H. Inorg. Chim., 2006, 45: 808—813
[78] Wang Z, Yuan J, Zhou M, Niu L, Ivaska A. Appl. Surf. Sci., 2008, 254: 6289—6293
[79] Li J, Wang L, Liu L, Guo L, Han X, Zhang Z. Chem. Commun., 2010, 46: 5109—5111
[80] Zhang Y, Grass M E, Kuhn J N, Tao F, Habas S E, Huang W, Yang P, Somorjai G A. J. Am. Chem. Soc., 2008, 130: 5868—5869
[81] 李玲(Li L). 表面活性剂与纳米技术(Surfactant and Nanotechnology). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004
[82] Song Y, Garcia R M, Dorin R M, Wang H, Qiu Y, Coker E N, Steen W A, Miller J E, Shelnutt J A. Nano Lett., 2007, 7: 3650—3655
[83] Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S. J. Mater. Chem., 2002, 12: 1765—1770
[84] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105: 4065—4067
[85] Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T. J. Phys. Chem. B, 2005, 109: 13857—13870
[86] Garg N, Scholl C, Mohanty A, Jin R. Langmuir, 2010, 26: 10271—10276
[87] Bai X, Gao Y, Liu H, Zheng L. J. Phys. Chem. C, 2009, 113: 17730—17736
[88] Nikoobakht B, El-Sayed M A. Langmuir, 2001, 17: 6368—6374
[89] Sui Z, Chen X, Wang L, Xu L, Zhuang W, Chai Y, Yang C. Physica E, 2006, 33: 308—314
[90] Kawasaki H, Nishimura K, Arakawa R. J. Phys. Chem. C, 2007, 111: 2683—2690
[91] Ahmadi T S, Wang Z L, Green T C, Henglein A, El-Sayed M A. Science, 1996, 272: 1924—1925
[92] Petroski J M, Wang Z L, Green T C, El-Sayed M A. J. Phys. Chem. B, 1998, 102: 3316—3320
[93] Washio I, Xiong Y, Yin Y, Xia Y. Adv. Mater., 2006, 18: 1745—1749
[94] Xia X, Zeng J, Oetjen L K, Li Q, Xia Y. J. Am. Chem. Soc., 2012, 134: 1793—1801
[95] Chen Y, Gu X, Nie C G, Jiang Z Y, Xie Z X, Lin C J. Chem. Commun., 2005, 4181—4183
[96] Song H, Kim F, Connor S, Somorjai G A, Yang P. J. Phys. Chem. B, 2005, 109: 188—193
[97] Flenniken M L, Uchida M, Liepold L, Kang S, Young M, Douglas T. Curr. Top. Microbiol. Immunol., 2009, 327: 71—93
[98] Jones M R, Osberg K D, Macfarlane R J, Langille M R, Mirkin C A. Chem. Rev., 2011, 111: 3736—3827
[99] Whaley S R, English D, Hu E L, Barbara P F, Belcher A M. Nature, 2000, 405: 665—668
[100] Brown S, Sarikaya M, Johnson E. J. Mol. Biol., 2000, 299: 725—735
[101] Gugliotti L A, Feldheim D L, Eaton B E. Science, 2004, 304: 850—852
[102] Gugliotti L A, Feldheim D L, Eaton B E. J. Am. Chem. Soc., 2005, 127: 17814—17818
[103] Chiu C Y, Li Y, Ruan L, Ye X, Murray C B, Huang Y. Nature Chem., 2011, 3: 393—399
[104] Naik R R, Stringer S J, Agarwal G, Jones S E, Stone M O. Nature Mater., 2002, 1: 169—172
[105] Chen J, Lim B, Lee E P, Xia Y. Nano Today, 2009, 4: 81—95
[106] Yin A X, Min X Q, Zhu W, Wu H S, Zhang Y W, Yan C H. Chem. Commun., 2012, 48: 543—545
[107] Huang X, Li Y, Zhou H, Duan X, Huang Y. Nano Lett., 2012, 12: 4265—4270
[108] Zhang J, Zhang L, Jia Y, Chen G, Wang X, Kuang Q, Xie Z, Zheng L. Nano Res., 2012, 5: 618—629
[109] Xie S, Lu N, Xie Z, Wang J, Kim M J, Xia Y. Angew. Chem. Int. Ed., 2012, 51: 10266—10270
[110] Mulvihill M J, Ling X Y, Henzie J, Yang P. J. Am. Chem. Soc., 2009, 132: 268—274
[111] Liao H G, Cui L, Whitelam S, Zheng H. Science, 2012, 336: 1011—1014
[112] Monzó J, Koper M, Rodriguez P. Chem. Phys. Chem., 2012, 13: 709—715
[1] 卢金荣, 巨勇. 基于三萜骨架的超分子凝胶体系[J]. 化学进展, 2016, 28(2/3): 260-268.
[2] 钟震, 路航, 任天斌. 纳米银形状控制合成与聚合物纳米银复合材料[J]. 化学进展, 2014, 26(12): 1930-1941.
[3] 武金丹, 巨勇. 基于天然产物骨架的分子离子识别体系[J]. 化学进展, 2013, 25(11): 1888-1897.
[4] 胡君, 巨勇. 三萜骨架功能分子[J]. 化学进展, 2011, 23(01): 181-191.
[5] 郭建 吴凯强 谢莉莉 徐凤波 袁耀锋. 含茂铁基三联吡啶钌功能分子的光电性质*[J]. 化学进展, 2010, 22(05): 773-783.
[6] 郭建 庄顺 吴凯强 袁耀锋. 神奇的构筑块二茂铁炔基在光电功能分子中的应用*[J]. 化学进展, 2009, 21(12): 2589-2594.
[7] 许梦清 邢丽丹 李伟善. 锂离子电池界面膜形成功能分子的研究现状*[J]. 化学进展, 2009, 21(10): 2017-2027.