English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 919-930 DOI: 10.7536/PC131240 前一篇   后一篇

• 综述与评论 •

超分子凝胶的手性功能应用:手性分子识别与不对称催化

靳清贤1, 李晶1, 李孝刚1, 张莉2, 方少明*1, 刘鸣华*2   

  1. 1. 郑州轻工业学院材料与化学工程学院 河南省表界面科学重点实验室 郑州 450001;
    2. 中国科学院胶体界面与化学热力学重点实验室 中国科学院化学研究所 北京 100190
  • 收稿日期:2013-12-01 修回日期:2014-02-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 方少明, 刘鸣华 E-mail:jqxian@iccas.ac.cn;liumh@iccas.ac.cn
  • 基金资助:

    郑州轻工业学院博士科研基金项目(No.2013BSJJ020)

Function and Application of Supramolecular Gels:Chiral Molecular Recognition and Asymmetric Catalysis

Jin Qingxian1, Li Jing1, Li Xiaogang1, Zhang Li2, Fang Shaoming*1, Liu Minghua*2   

  1. 1. Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China;
    2. CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2013-12-01 Revised:2014-02-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the Doctoral Science Research Foundation of Zhengzhou University of Light Industry (No.2013BSJJ020)

超分子凝胶通过形成三维空间网络结构将溶剂液体相固定化,是一类重要的软物质材料。由于超分子凝胶能快速形成,自组装形成的纳米结构均一、可调,且可大规模制备,因此成为超分子化学、纳米技术以及材料科学研究的重要研究方向之一,并在诸多领域得到广泛的功能研究和应用拓展,如在材料模板、光电开关、药物释放、分子识别和超分子催化等方面已有大量研究报道。由于超分子凝胶具有固-液相可逆转变、可控组装等特性,成为了超分子手性和分子手性研究的重要载体。近年来超分子凝胶在超分子手性催化、手性分子识别等方面取得了一系列重要突破,为超分子凝胶功能应用开辟了新的空间,为手性科学研究提供了新的手段和方法。

Supramolecular gel is an important class of soft materials, in which the solvents are immobilized by the entangled three-dimensional network formed by gelator molecules via the various non-covalent interactions. Supramolecular gel can be quickly formed, self-assembled into uniform and adjustable nanostructure over a wide scale range. Thus the research of supramolecular gel is one of the important research directions among supramolecular chemistry, nanotechnology and materials science. The functional gels are applied widely in many fields, such as material templates, photoelectric switch, drug release, molecular recognition, supramolecular catalysis, etc. With solid-liquid phase transition, controlled self-assembly and other characteristics, the supramolecular gel has become an important vehicle of the reserch of supramolecular chirality and molecular chirality. In recent years, the supramolecular gel has been applied to supramolecular asymmetric catalysis and chiral molecular recognition. And a series of important breakthroughs have been achieved. The new functional application of supramolecular gels have been established, and supramolecular gels have become an important means and method for preparation of chiral nano-materials.The chiral supramolecular gels, as a kind of soft materials will have potential application in the field of asymmetric catalysis and chiral recognition. The supramolecular gels may provide a high density of recognition or catalytic sites and chiral microenvironment suitable for recognition and asymmetric reaction, thus, the study of asymmetric catalysis and enantioselective recognition in the supramolecular gels becomes a hot issue and has attracted more and more attention in recent years.In this paper,the application of supramolecular gels on asymmetric catalysis and chiral recognition are reviewed mainly.

Contents
1 Introduction
2 Application of supramolecular gels in chiral molecular recognition
2.1 Chiral molecular recognition based on gel phenomenon
2.2 Chiral molecular recognition based on fluorescence spectra
2.3 Chiral molecular recognition based on supramolecular chiral characterization
3 Application of supramolecular gels in asymmetric catalysis
3.1 Self-assembly strategies for asymmetric organocatalysis
3.2 Asymmetric catalysis in supramolecular gels
4 Conclusion and outlook

中图分类号: 

()

[1] Abdallah D J, Weiss R G. Adv. Mater., 2000, 12(17): 1237.
[2] Lehn J M. Angew. Chem. Int. Ed., 1990, 29(11): 1304.
[3] Llusar M, Sanchez C. Chem. Mater., 2008, 20(3): 782.
[4] van Bommel K J C, Friggeri A, Shinkai S. Angew. Chem. Int. Ed., 2003, 42(9): 980.
[5] Jung J H, Kobayashi H, Masuda M, Shimizu T, Shinkai S. J. Am. Chem. Soc., 2001, 123(36): 8785.
[6] Kuroiwa K, Shibata T, Takada A, Nemoto N, Kimizuka N. J. Am. Chem.Soc., 2004, 126(7): 2016.
[7] Moon K S, Kim H J, Lee E, Lee M. Angew. Chem. Int. Ed., 2007, 46(36): 6807.
[8] Huang Z, Lee H, Lee E, Kang S K, Nam J M, Lee M. Nat. Commun., 2011, 2: 459.
[9] Jin Q X, Zhang L, Cao H, Wang T Y, Zhu X F, Jiang J, Liu M H. Langmuir, 2011, 27(22): 13847.
[10] Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Chem. Eur. J., 2012, 18(16): 4916.
[11] Nie X P, Wang G J. J. Org. Chem., 2006, 71(13): 4734.
[12] Tian H, Wang S. Chem. Commun., 2007, 8: 781.
[13] Bhatmcharya S, Krishnan-Ghosh Y. Chem. Commun., 2001, 2: 185.
[14] Debnath S, Shome A, Dutta S, Das P K. Chem. Eur. J., 2008, 14(23): 6870.
[15] Hu Y L, Fan Y F, Huang Z L, Song C Y, Li G K. Chem. Commun., 2012, 48(33): 3966.
[16] Stupp S I, LeBonheur V, Walker K, Li L S, Huggins K E, Keser M, Amstutz A. Science, 1997, 276(5311): 384.
[17] Lee K Y, Mooney D J. Chem. Rev., 2001, 101(7): 1869.
[18] Yang Z, Liang G, Guo Z, Xu B. Angew. Chem. Int. Ed., 2007, 46(43): 8216.
[19] Yang Z M, Ho P L, Liang G L, Chow K H, Wang Q G, Cao Y, Guo Z H, Xu B. J. Am. Chem. Soc., 2007, 129(2): 266.
[20] Matson J B, Stupp S I. Chem. Commun., 2012, 48(1): 26.
[21] Feriggeri A, Feringa B L, Van Esch J. J. Control. Release, 2004, 97(2): 24l.
[22] Tiller J C. Angew. Chem. Int. Ed., 2003, 42(27): 3072.
[23] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34 (10): 821.
[24] Estroff L A, Hamilton A D. Chem. Rev., 2004, 104(3): 1201.
[25] Das D, Kar T, Das P K. Soft Matter, 2012, 8(8): 2348.
[26] Banerjee S, Das R K, Maitra U. J. Mater. Chem., 2009, 19(37): 6649.
[27] Tam A Y Y, Yam V W W. Chem. Soc. Rev., 2013, 42(4): 1540.
[28] Nuraje N, Bai H Y, Su K. Prog. Polym. Sci., 2013, 38(2): 302.
[29] 段小丽(Duan X L), 付雁(Fu Y), 张金利(Zhang J L), 李韡(Li W). 化学进展(Progress in Chemistry), 2013, 25(8):1272.
[30] Yuan J, Liu M H. J. Am. Chem. Soc., 2003, 125(17): 5051.
[31] Huang X, Li C, Jiang S G, Wang X S, Zhang B W, Liu M H. J. Am. Chem. Soc., 2004, 126(5): 1322.
[32] Guo P Z, Zhang L, Liu M H. Adv. Mater., 2006, 18(2): 177.
[33] 靳清贤(Jin Q X).中国科学院化学研究所博士论文(Doctoral Dissertation of Institute of Chemistry, Chinese Academy of Sciences), 2012
[34] Steed J W. Chem. Commun., 2011, 47(5): 1379—1383
[35] Han C P, Hou X, Zhang H C, Guo W, Li H B, Jiang L. J. Am. Chem. Soc., 2011, 133(20): 7644.
[36] Zheng B, Wang F, Dong S Y, Huang F H. Chem. Soc. Rev., 2012, 41(5): 1621.
[37] James T D, Kawabata H, Ludwig R, Murata K, Shinkai S. Tetrahedron, 1995, 51(2): 555.
[38] De Loos M, van Esch J, Kellogg R M, Feringa B L. Angew. Chem. Int. Ed., 2001, 40(3): 613.
[39] Escuder B, Miravet J F, Saez J A. Org. Bio. Chem., 2008, 6(23): 4378.
[40] Saez J A, Escuder B, Miravet J F. Chem. Commun., 2010, 46(42): 7996.
[41] Shen J S, Li D H, Cai Q G, Jiang Y B. J. Mater. Chem., 2009, 19(34): 6219.
[42] Edwards W, Smith D K. Chem. Commun., 2012, 48(22): 2767.
[43] Ghosh K, Sarkar A R, Chattopadhyay A P. Eur. J. Org. Chem., 2012, 7: 1311.
[44] Dawn A, Shiraki T, Ichikawa H, Takada A, Takahashi Y, Tsuchiya Y, Le T N L, Shinkai S. J. Am. Chem. Soc., 2012, 134(4): 2161.
[45] Zheng Y S, Ran S Y, Hu Y J, Liu X X. Chem. Commun., 2009, 9: 1121.
[46] Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. J. Am. Chem. Soc., 2010, 132(21): 7297.
[47] Tu T, Fang W W, Bao X L, Li X B, Dotz K H. Angew. Chem. Int. Ed., 2011, 50(29): 6601.
[48] Tripathi A, Kumar A, Pandey P S. Tetrahedron Lett., 2012, 53(43): 5745.
[49] Maeda K, Mochizuki H, Osato K, Yashima E. Macromolecules, 2011, 44(9): 3217.
[50] Liu D, Du X X, Zhang Y Y, Deng J P, Yang W T. Macromol. Res., 2011, 19(7): 729.
[51] Miao W G, Zhang L, Wang X F, Cao H, Jin Q X, Liu M H. Chem. Eur. J., 2013, 19(9): 3029.
[52] Miao W G, Zhang L, Wang X F, Qin L, Liu M H. Langmuir, 2013, 29(18): 5435.
[53] Jintoku H, Takafuji M, Oda R, Ihara H. Chem. Commun., 2012, 48(40): 4881.
[54] Cao H, Zhu X F, Liu M H. Angew. Chem. Int. Ed., 2013, 52(15): 4122.
[55] Eder U, Sauer G, Weichert R. Angew. Chem. Int. Ed., 1971, 10(7): 496.
[56] Hajos Z G, Parrish D R. J. Org. Chem., 1974, 39 (12): 1612.
[57] List B, Lerner R A, Barbas C F. J. Am. Chem. Soc., 2000, 122(10): 2395.
[58] Ahrendt K A, Borths C J, MacMillan D W C. J. Am. Chem. Soc., 2000, 122(17): 4243.
[59] Yang J W, Chandler C, Stadler M, Kampen D, List B. Nature, 2008, 452(7186): 453.
[60] Clarke M L, Fuentes J A. Angew. Chem. Int. Ed., 2007, 46(6): 930.
[61] Mandal T, Zhao C G. Angew. Chem. Int. Ed., 2008, 47(40): 7714.
[62] Mase N, Nakai Y, Ohara N, Yoda H, Takabe K, Tanaka F, Barbas C F. J. Am. Chem. Soc., 2006, 128(3): 734.
[63] Qin L, Zhang L, Jin Q X, Zhang J L, Han B X, Liu M H. Angew. Chem. Int. Ed., 2013, 52(30): 7761.
[64] Escuder B, Rodriguez-Llansola F, Miravet J F. New J. Chem., 2010, 34(6): 1044.
[65] Rodriguez-Llansola F, Escuder B, Miravet J F. J. Am. Chem. Soc., 2009, 131(32): 11478.
[66] 许杨(Xu Y), 康传清(Kang C Q), 高连勋(Gao L X), 孟庆新(Meng Q X). 应用化学(Chinese Journal of Applied Chemistry), 2013, 30(1): 1.
[67] Tanaka K, Mori A, Inoue S. J. Org. Chem., 1990, 55(1): 181.
[68] Rodriguez-Llansola F, Miravet J F, Escuder B. Chem. Commun., 2009, (47): 7303.
[69] Dawn A, Fujita N, Haraguchi S, Sada K, Tamaru S, Shinkai S. Org. Bio. Chem., 2009, 7(21): 4378.
[70] Dawn A, Fujita N, Haraguchi S, Sada K, Shinkai S. Chem. Commun., 2009, (16): 2100.
[71] Chattopadhyay T, Kogiso M, Asakawa M, Shimizu T, Aoyagi M. Catal. Commun., 2010, 12(1): 9.
[72] de Jong J J D, Lucas L N, Kellogg R M, van Esch J H, Feringa B L. Science, 2004, 304(5668): 278.

[1] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[2] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[3] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[4] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[5] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[6] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[7] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[8] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[9] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[10] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[11] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[12] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[13] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[14] 周欣宇, 周春才*. 抗菌肽及类抗菌肽的设计、合成及应用[J]. 化学进展, 2018, 30(7): 913-920.
[15] 王雪, 陈中慧, 卿光焱*. 基于磷脂膜的界面相互作用研究[J]. 化学进展, 2018, 30(7): 888-901.
阅读次数
全文


摘要